

PARCHEGGIO SCAMBIATORE IN LOCALITA' BADIA A SETTIMO E PASSERELLA CICLO-PEDONALE

di collegamento con la stazione ferroviaria di San Donnino

LOTTO 1 PASSERELLA CICLO-PEDONALE

PROGETTOD	ELIMITIA	,			
			Elabor	ato	
RELAZIONE TECNICA DI CALCOLO STR	UTTURALE		CP1	3	a [
BUB - Dell Lauranda Famini	Codice progetto	Lotto	Nome eleborato	Fase progetto	Revisione
R.U.P.: Dott. Leonardo Ermini	BASD	0	CP13	2	1

Autore del concept progettuale: Arch. Luigi Ulivieri CUP: B73E11000050005

Collaboratori RUP:

Ing. Vincenzo Verzino - Dott. Maria Teresa Coletta

Collaboratore in materia di sicurezza:

Arch, Anna Brunelli

Progettazione architettonica e paesaggistica:

Arch. Gianni Nesi

Progettazioni specialistiche:

Geologia: Dott. Geol. Paolo Prunecchi

Idraulica: Ing. Lorenzo Bechi Urbanistica:Arch. Davide Cardi Sicurezza:Geom. Saverio Bugialli

Capitolati, computi metrici e adeguamento viabilità:

Geom. Fabio Fallani Geom. Filippo Cerami Prof. Luca Massucchi

Progettazione delle opere strutturali:

SE.I.CO. srl Ing. Massimo Viviani

Deta redazione elaborato: Maggio 2015

- PROGETTO DEFINITIVO -

INDICE

	A - DESCRIZIONE GENERALE DELL'OPERA E DEI CRITERI DI VERI	FICA
A.1	ASPETTI TECNICI	
A.2	NORMATIVA DI RIFERIMENTO	2
A.3	DATI CARATTERISTICI	3
	B- RELAZIONE SUI MATERIALI	
B.1	CARATTERISTICHE DEI MATERIALI	7
	C- RELAZIONE DI CALCOLO	
C.1	DEFINIZIONE DELLE AZIONI	10
C.2	ANALISI SISMICA	16
C.3	DEFINIZIONE DELLE CONDIZIONI DI CARICO	30
C.4	MODELLAZIONE E SCHEMATIZZAZIONE STRUTTURALE	37
C.5	CARATTERISTICHE DELLA SOLLECITAZIONE	44
C.6	VERIFICHE ALLO STATO LIMITE ULTIMO (SLU) - IMPALCATO	74
	C.6.1 VERIFICHE ALLO SLU PER AZIONI FLETTENTI	74
	C.6.2 VERIFICHE ALLO SLU PER AZIONI TAGLIANTI E TORCENTI	82
	C.6.3 EFFETTI LOCALI	87
C.7	VERIFICHE ALLO STATO LIMITE ULTIMO (SLU) - SOTTOSTRUTTURE	E 89
	C.7.1 PILA CENTRALE	89
	C.7.2 BASAMENTO	92
	C.7.3 MURI DI SOSTEGNO	92
	C.7.4 FONDAZIONI	93
C.8	VERIFICHE ALLO STATO LIMITE DI ESERCIZIO (SLE) - IMPALCATO	97
	C.8.1 VERIFICHE DI DEFORMABILITÀ	97
C.9	VERIFICHE ALLO STATO LIMITE DI ESERCIZIO (SLE)	
	- SOTTOSTRUTTURE	99
C.1	COMPORTAMENTO DINAMICO	102

- PROGETTO DEFINITIVO -

]	D - PIANO DI MANUTENZIONE DELLA PARTE STRUTTU	RALE DELL'OPERA
D.1	PIANO DI MANUTENZIONE ORDINARIA	106
	E - APPENDICE	
E.1	CARATTERISTICHE GEOMETRICHE	107
E.2	PRESCRIZIONI CONFERENZA SERVIZI	126

- PROGETTO DEFINITIVO -

A DESCRIZIONE GENERALE DELL'OPERA E DEI CRITERI DI VERIFICA

A.1 ASPETTI TECNICI

La presente relazione ha come oggetto la progettazione di una passerella pedonale in acciaio (ponte di terza categoria) che consentirà l'attraversamento del fiume Arno.

La nuova passerella presenta un impianto strutturale tipico dei ponti di media luce. Lo schema statico è a trave continua su tre appoggi con luci non simmetriche, precisamente 68,50 m in sponda sinistra e 112,50 m in sponda destra, per un totale di attraversamento pari a 181,00 m. La struttura è ad asse pressoché rettilineo, con sezione trasversale variabile che partendo dall'appoggio centrale con inerzia massima si riduce verso i due appoggi laterali.

La sezione trasversale presenta variabilità sia nei riguardi dell'altezza sia nella larghezza della soletta superiore, con valori compresi tra 4,00 e 6,00 m, con pareti laterali inclinate e intradosso concavo, così da soddisfare i requisiti estetici derivanti dalla progettazione architettonica. La sua tipologia strutturale è di tipo in acciaio a piastra ortotropa, con geometria bicellulare.

Lo schema vincolare della struttura è rappresentato da cerniere cilindriche scorrevoli sui due appoggi di estremità e fissa in corrispondenza dell'appoggio intermedio. Dal punto di vista torsionale tutti e tre i punti di appoggio sono pienamente efficienti per il contrasto di sollecitazioni di questo tipo.

Le sottostrutture sono costituite da due spalle e da una pila centrale in c.a. normale. Le due spalle sono di tipo immerso nell'argine in modo da limitare, per quanto possibile, l'alterazione della forma arginale originaria. La pila centrale, di tipo massiccio, è conformata secondo un preciso intento architettonico e costituisce un punto di appoggio di piena efficienza verso le azioni del ponte comunque dirette. La sagoma esterna in calcestruzzo è distanziata dalla struttura della pila mediante opportuno giunto sismico.

Le opere di fondazione sono costituite da sistemi di pali di grande diametro, \emptyset =150 cm, spinti fino allo strato portante così da essere in grado di sostenere le azioni derivanti dall'impalcato.

Nel seguito si riportano le verifiche strutturali. Esse vengono effettuate secondo quanto stabilito dal D.M. 14 Gennaio 2208 NTC2008 "Norme tecniche per le costruzioni".

- PROGETTO DEFINITIVO -

A.2 NORMATIVA DI RIFERIMENTO

- o **D.M. 14 Gennaio 2008** NTC2008 « Norme tecniche per le costruzioni »
- o Circolare Applicativa al NTC2008 –Circ. Appl. NTC2008
- o EC3 "Progettazione delle strutture in acciaio".
- o Allegato A alle norme tecniche per le costruzioni « Pericolosità Sismica »
- Allegato B alle norme tecniche per le costruzioni « Tabelle dei parametri che definiscono l'azione sismica »
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio dei Lavori Pubblici Servizio Tecnico Centrale
- Technical guide Footbridges Assessment of vibrational behaviour of footbridges under pedestrian loading – SÉTRA – Service d'Ètudes techniques des routes et autoroutes

- PROGETTO DEFINITIVO -

A.3 DATI CARATTERISTICI

I dati caratteristici della struttura sono di seguito riportati.

Ubicazione

La struttura dovrà sorgere nel comune di Campi Bisenzio, provincia di Firenze, e servirà a superare il fiume Arno.

Le coordinate geografiche sono le seguenti:

La quota sul livello del mare dell'area oggetto dell'intervento è pari a circa:

La distanza dalla costa è circa:

Distanza dalla costa..... $D_{costa} = 70 \text{ km}$

Zonizzazione per azioni da vento

Al fine della determinazione dell'azione sismica, l'area in oggetto ricade nella zona 3.

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- PROGETTO DEFINITIVO -

Approccio Strutturale

Rif.: 2.6.1 del NTC2008

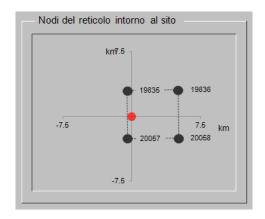
Per le verifiche nei confronti degli stati limite ultimi strutturali (SLU STR) e geotecnici (SLU GEO) è stato adottato l'**APPROCCIO 2**, impiegando, così, un'unica combinazione dei gruppi di coefficienti parziali: per le azioni, per la resistenza dei materiali e per la resistenza globale.

Classificazione sismica regionale

In base all'attuale classificazione sismica del territorio regionale, l'area oggetto dell'intervento ricade in **zona 3s**.

Inserimento nel reticolo di riferimento

Rif.: Allegato A del NTC2008


La pericolosità sismica del sito è stata valutata mediante i valori dell'accelerazione orizzontale massima, a_g, e dei parametri che permettono di definire gli spettri di risposta, in accordo a quanto stabilito nell'NTC2008, associati al *reticolo di riferimento*.

I nodi del reticolo che definiscono la maglia all'interno della quale ricade il sito in oggetto sono i seguenti:

- PROGETTO DEFINITIVO -

nodi n.: 19835 19836 20057 20058

Vita nominale

Rif.: 2.4.1 del NTC2008

La vita nominale dell'opera in questione, V_N , ovvero il numero di anni nel quale la struttura, purché soggetta a manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata, è stata assunta pari a:

 $V_N=50$ anni......Vita nominale (Tab. 2.4.I del NTC2008);

Valore associato ai tipi di costruzioni comprese tra "opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale"

Classe d'uso

Rif.: 2.4.2 del NTC2008

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso prodotto da azioni sismiche, il ponte oggetto della presente relazione rientra tra le costruzioni di Classe III, così definita dalla normativa: "costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso".

Il coefficiente d'uso vale:

C_U=1,5......Coef. d'uso relativo alla Classe d'uso III (Tab. 2.4.II del NTC2008).

- PROGETTO DEFINITIVO -

Periodo di riferimento

Rif.: 2.4.3 del NTC2008

L'azione sismica sulla struttura è stata valutata sulla base del periodo di riferimento, V_R , ottenuto moltiplicando la vita nominale dell'opera, V_N per il coefficiente d'uso C_U :

 $V_R = V_N C_U = 75$ anni

Caratteristiche del sottosuolo e condizioni topografiche

Rif.: 3.2.2 del NTC2008

Le caratteristiche del sito ove andrà ad essere realizzata la struttura in progetto permettono di considerare una categoria di sottosuolo **TIPO** C e una condizione topografica **T1**.

Fattore di Struttura

Rif.: 7.9.2.1 e 7.9.5.3 del NTC2008

Per quanto riguarda la struttura, il fattore di struttura per le azioni sismiche orizzontali e verticali è stato assunto sistematicamente uguale a uno.

Classi delle sezioni

Rif.: 4.2.3 del NTC2008

La struttura è caratterizzata da sezioni di classe massima pari a 4. Per le verifiche di resistenza si è fatto pertanto riferimento alle sezioni efficaci.

Sensibilità alla fatica

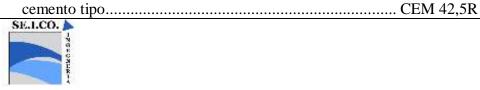
Rif.: 4.2.4.1.4 della Circolare Applicativa del NTC2008

La tipologia della struttura metallica la rende sensibile alla fatica.

- PROGETTO DEFINITIVO -

B RELAZIONE SUI MATERIALI

B.1 CARATTERISTICHE DEI MATERIALI


I materiali considerati nel progetto dell'opera in questione sono indicati e sommariamente descritti nel paragrafo che segue.

Calcestruzzo

Rif.: 4.1 e 11.2 del NTC2008

I calcestruzzi sono conformi alla norma UNI EN 13670-1: 2001

0	calcestruzzo magro per getti di pulizia e livellamento: classe di resistenza minima resistenza cubica a compressione resistenza cilindrica caratteristica a compressione	$\begin{aligned} R_{ck} &\geq 15 \text{ MPa} \\ f_{ck} &= 12,45 \text{ MPa} \end{aligned}$
	modulo elastico	$E_c = 27267 \text{ MPa}$
0	calcestruzzo per il getto dei pali e delle fondazioni: classe di resistenza minima	C25/30
	resistenza cubica a compressione	
	resistenza cilindrica caratteristica a compressione	$f_{ck} = 24,90 \text{ MPa}$
	modulo elastico	-
	classe di esposizione	
	diametro massimo degli inerti	30 mm
	classe di consistenza	S3/S4
	cemento tipo	CEM 42,5R
0	calcestruzzo per il getto delle opere in elevazione:	
	classe di resistenza minima	C32/40
	resistenza cubica a compressione	$R_{ck} \ge 40 \text{ MPa}$
	resistenza cilindrica caratteristica a compressione	$f_{ck} = 33,20 \text{ MPa}$
	modulo elastico	$E_c = 33643 \text{ MPa}$
	classe di esposizione	XF1
	diametro massimo degli inerti	30 mm
	classe di consistenza.	

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- PROGETTO DEFINITIVO -

Acciaio per cemento armato

Rif.: 11.3.2 del NTC2008

o Tipo di acciaio: tipo B450C

tensione nominale di snervamento $f_{y \text{ nom}} \ge 450 \text{ MPa}$ tensione nominale di rottura $f_{t \text{ nom}} \ge 540 \text{ MPa}$

Acciaio per barre ad alta resistenza

Rif.: 11.3.3 del NTC2008

o Tipo di acciaio: acciaio per armature da precompressione

tensione caratteristica di snervamento $f_{pyk} \ge 800 \text{ MPa}$ tensione caratteristica di rottura $f_{ptk} \ge 1000 \text{ MPa}$

Acciaio per strutture metalliche

Rif.: 11.3.4 del NTC2008

o Acciaio per lamiere e testate: S 355 J2

Valori caratteristici

spessore nominale dell'elemento $40 \text{ mm} < t \le 80 \text{ mm}$

tensione di snervamento $f_y = 335 \text{ MPa}$ tensione di rottura $f_u = 470 \text{ MPa}$

Modulo di elasticità 210000 MPa

Fattore di Poisson v = 0.3

- PROGETTO DEFINITIVO -

O Bulloni: Classe 10.9 (Alta resistenza) per la vite

Classe 10 (Alta resistenza) per il dado

Valori caratteristici

tensione di snervamento $f_{yb} = 900 \text{ MPa}$ tensione di rottura $f_{tb} = 1000 \text{ MPa}$

Saldature:

Le tensioni di snervamento e di rottura, così come le caratteristiche di allungamento e di resilienza del materiale di apporto, dovranno essere equivalenti o migliori rispetto a quelle riferite al materiale base.

N.B.: tutte le saldature, se non diversamente specificato, dovranno essere di tipo a completa penetrazione.

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- Progetto Definitivo -

C RELAZIONE DI CALCOLO

C.1 DEFINIZIONE DELLE AZIONI

Azioni Permanenti

Rif.: 5.1.3.1 del NTC2008

Peso Proprio degli elementi strutturali (g₁)

Il peso proprio degli elementi strutturali in acciaio è stato calcolato considerando le dimensioni caratteristiche dei vari elementi che compongono la struttura e un peso specifico pari a 80 kN/m³. Detto valore è stato quindi incrementato dell'10% al fine di stimare il peso associato agli elementi di dettaglio (bulloneria e piastrame secondario).

Per le sottostrutture, oltre alle dimensioni effettive degli elementi che le compongono, si è messo in conto il peso specifico del calcestruzzo pari a 25 kN/m³.

Carichi permanenti portati (g₂)

Per la azioni permanentemente portate di tipo non strutturale, i carichi sono calcolati facendo riferimento alla tipologia di finitura utilizzata, per dimensioni e materiali impiegati. Nel dettaglio, si è messo in conto:

Pavimentazione

Per la pavimentazione della sede ciclo-pedonale, il peso specifico è stato assunto pari a 20 kN/m³ e lo spessore medio uguale a 4 cm. Il peso a metro quadrato risulta γ_{pav} =0,80 kN/m².

L'azione agente sulla struttura è stata quindi computata considerando l'effettiva larghezza della sede ciclo-pedonale, variabile da 4 m a 6 m circa.

Opere di finitura

Con riferimento all'impalcato, i carichi considerati sono i seguenti

Ringhiere e corrimano

 $g_{2 \text{ (Ringhiere)}} = 2 \times 1,00 = 2,0 \text{ kN/m}$

- PROGETTO DEFINITIVO -

Servizi vari

 $g_{2 \text{ (Servizi)}} = 1.0 \text{ kN/m}$

Finiture esterne

 $g_{2 \text{ (finiture)}} = 1 \text{ kN/m}$

Con riferimento alla pila, si è messo in conto il carico associato alla sagoma in calcestruzzo a ricoprimento della pila stessa e di una porzione di terreno sovrastante la zattera di fondazione. Esso è stato ipotizzato agire in corrispondenza della fondazione.

Sagoma in Cls e Terreno

 $G_{2 \text{ (Sagoma e Terreno)}} = 4800 \text{ kN}$

Deformazioni impresse

Rif.: 5.1.3.2 del NTC2008

<u>Variazioni Termiche (ε₃)</u>

Al fine di tener di conto degli effetti dovuti alla variazione di temperatura, si è considerata un'escursione termica contraddistinta dai seguenti valori limite:

$$T_{min} = -15^{\circ}C$$

$$T_{max} = 45^{\circ}C$$

Ipotizzando una temperatura iniziale pari a $T_0 = 30$ °C, le componenti uniformi di variazione termica risultano:

$$\Delta T = \pm 30^{\circ} C$$

Poiché la struttura è esternamente iperstatica per le azioni di tipo flettente, per valutare gli effetti di un gradiente di temperatura all'interno delle sezioni della struttura, si sono considerate due distribuzioni lineari della variazione termica, nel solo spessore dell'impalcato. La prima, tesa a rappresentare la condizione estiva, prevede una variazione di temperatura nulla all'intradosso e pari a più dieci gradi all'estradosso, la seconda, invece, caratterizzante la condizione invernale, prevede una variazione nulla di temperatura all'estradosso ed un raffreddamento dell'intradosso pari alla a

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- PROGETTO DEFINITIVO -

quello considerato nel caso precedente, ovvero una diminuzione di temperatura pari ancora a dieci gradi.

$$\Delta T^{estivo} = \qquad \{\Delta T^{inf} = 0^{\circ}C; \qquad \Delta T^{sup} = +10^{\circ}C\}$$

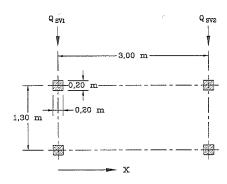
$$\Delta T^{invernale} = \{\Delta T^{inf} = -10^{\circ}C; \Delta T^{sup} = 0^{\circ}C\}$$

Considerando uno spessore medio dell'impalcato prossimo a 2,50 m, i gradienti termici da mettere in conto nell'analisi sono i seguenti:

$$\Delta T^{estivo} / h = 4 \, {}^{\circ}C/m$$

$$\Delta T^{invernale} / h = -4 \, {}^{\circ}C/m$$

Azione variabili da traffico $(q_1 + q_2)$


Rif.: 5.1.3.3 del NTC2008

La passerella pedonale essendo classificata come *Ponte di Terza Categoria* è destinata al solo transito dei pedoni e dei mezzi di soccorso.

I carichi presi in considerazione sono i seguenti:

Folla compatta $q=5,00 \text{ KN/m}^2$

Mezzo di soccorso: $Q_{sv1}=40 \text{ KN}$ e $Q_{sv2}=80 \text{ KN}$ secondo lo schema seguente:

La disposizione longitudinale e trasversale di tali carichi, così come la loro frammentazione, è desunta dalle linee di influenza delle caratteristiche di sollecitazioni, in modo da individuare

- PROGETTO DEFINITIVO -

opportune stese di carico in grado di rappresentare le situazioni di maggior impegno per la struttura in progetto.

Incremento dinamico addizionale in presenza di discontinuità strutturali

I carichi mobili includono gli effetti dinamici. Non è pertanto necessario considerare un coefficiente dinamico addizionale.

Azione longitudinale di frenamento e accelerazione (q3)

Rif.: 5.1.3.5 del NTC2008

Per il carico orizzontale di progetto, si assume un valore pari al 10% del carico verticale dovuto alla folla compatta supposta agire su tutta la passerella, orientato nella direzione longitudinale della struttura.

Azione centrifuga (q4)

Rif.: 5.1.3.6 del NTC2008

La passerella ha una geometria ad asse rettilineo, l'azione centrifuga, quindi, non è presente.

Azioni di neve e vento (q5)

Rif.: 5.1.3.7 e 3.3 del NTC2008

Neve

Per quanto riguarda le azioni dovute alla neve, trattandosi di un ponte non coperto, esse sono da ritenersi non concomitanti con i carichi da traffico, esse possono pertanto essere trascurate in quanto di entità molto inferiore ai carichi mobili transitanti sulla passerella.

Vento

L'azione del vento può essere schematizzata come una pressione statica equivalente agente lungo una direzione orizzontale, ortogonale all'asse longitudinale della struttura. Al fine di calcolarne l'intensità, si valuta la pressione cinetica di riferimento:

$$q_b = \frac{1}{2} \rho \ v_b^2 = 456 \ N/m^2$$

- PROGETTO DEFINITIVO -

essendo ρ la densità dell'aria, assunta pari a 1,25 kg_{massa}/m³, e v_b la velocità [m/s] di riferimento del vento, poiché il ponte dovrà sorgere in Toscana (zona 3) ad un'altitudine inferiore ai 500 m, essa risulta:

$$v_b = 27 \text{ m/s}$$
 (p.to 3.3.2 del NTC2008)

Considerando la distanza dalla costa pari a circa 70 km, un'altezza media della zona interessata dalla pressione del vento pari a z=18 m e una classe di rugosità del terreno uguale a D (aree prive di ostacoli) (Tb. 3.3.III del NTC2008), alla quale corrisponde una categoria di esposizione II (Fig. 3.3.2 del NTC2008), i valori per la definizione del coefficiente di esposizione valgono:

$$k_r = 0.19$$
 $z_o = 0.05 \text{ m}$ $z_{min} = 4 \text{ m}$ (Tab. 3.3.II del NTC2008)

dai quali si:

$$c_{e(z=18 \text{ m})} = k_r^2 c_t \ln(z/z_0) (7+c_t \ln(z/z_0)) = 2,738$$
 (Eq. 3.3.5 del NTC2008)

avendo assunto un coefficiente di topografia c_t pari a 1.

Ipotizzando un coefficiente di forma $c_p = 1,2$ e un coefficiente dinamico $c_d = 1$, si ottiene

$$p = q_b c_e c_p c_d = 1497 \text{ N/m}^2 \rightarrow 1,50 \text{ kN/m}^2$$

Operando a favore di sicurezza, nell'analisi strutturale si è considerata una superficie esposta al vento costante di altezza pari a 3,50 m. L'azione orizzontale di progetto risulta:

$$q_5 = \pm 5,25 \text{ kN/m}$$

Per l'azione in parola, inoltre, si è messa in conto una coppia trasversale (torcente) ripartita lungo l'asse del manufatto. Considerando un'eccentricità pari a 0,20 m, il suo valore risulta

$$m_v(q_5) = \pm 1,05 \text{ kNm/m}$$

Azioni sismiche

Rif.: p.to 5.1.3.8 del NTC2008

Per l'azione sismica, si rimanda al capitolo "ANALISI SISMICA"

- PROGETTO DEFINITIVO -

Azioni idrauliche

Rif.: p.to 5.1.3.11 del NTC2008

Per valutare l'intensità del carico associato alla pressione idraulica sulla pila, si sono messe in conto le seguenti grandezze:

$$v_{acqua} = 4 \text{ m/s}$$

$$c_r = 0.6$$

$$\rho_{acqua} = 1000 \text{ kg}_{massa}/m^3$$

velocità dell'acqua

coefficiente di forma della pila

densità dell'acqua

$$q= {}^{1\!\!}/_{\!2} \times \rho_{acqua} \times {v_{acqua}}^2 \times c_r = 4800 \text{ N/m}^2 \longrightarrow 4,80 \text{ kN/m}^2$$

Per la larghezza della p ila, si è assunto:

$$B = 4 \text{ m}$$

larghezza della pila

PASSERELLA CICLO-PEDONALE - PROGETTO DEFINITIVO -

C.2 ANALISI SISMICA

Nel seguito, si riporta lo studio del comportamento del ponte sotto l'azione sismica. L'analisi è stata condotta considerando le indicazioni normative riportate nel D.M. 14/01/2008 – NTC2008, e dall'Allegato A dello stesso D.M., nonché i valori dei parametri sismici elencati nell'Allegato B della medesima Norma. Gli effetti sismici sono stati valutati convenzionalmente mediante un'analisi statica equivalente. Nel seguito, si riportano le ipotesi e i parametri impiegati nella progettazione sismica della struttura.

In fase costruttiva si dovrà verificare l'assenza di azioni sismiche parassite derivanti dalla copertura della pila centrale o, in alternativa, si dovrà procedere all'aggiornamento delle verifiche di sicurezza delle sottostrutture e fondazioni interessate.

Vita Nominale – Classe d'uso – Periodo di riferimento

La vita nominale, V_N, della presente struttura è stata assunta pari a:

Poiché il ponte rientra tra le costruzioni di Classe III, il coefficiente d'uso corrispondente vale

C_U=1,5......Coef. d'uso relativo alla Classe d'uso III (Tab. 2.4.II del NTC2008).

L'azione sismica sulla struttura è stata valutata sulla base del periodo di riferimento, V_R , ottenuto moltiplicando la vita nominale dell'opera, V_N per il coefficiente d'uso C_U :

$$V_R = V_N C_U = 75$$
 anni

Caratteristiche generali

Struttura

L'impianto strutturale della costruzione in oggetto consiste in una trave ad asse pressoché rettilineo con schema statico di trave continua su tre appoggi. Lo schema vincolare della struttura è rappresentato da cerniere cilindriche scorrevoli sui due appoggi di estremità e fissa in

- PROGETTO DEFINITIVO -

corrispondenza dell'appoggio intermedio, in prossimità di una pila in c.a. Dal punto di vista torsionale tutti e tre i punti di appoggio sono pienamente efficienti per il contrasto di sollecitazioni di questo tipo. L'impalcato è in acciaio.

Fattore di Struttura

Il fattore di struttura sia per le azioni sismiche orizzontali sia per le quelle orizzontali, operando a favore di sicurezza, è stato sistematicamente posto unitario.

Definizione delle azioni

L'azione sismica è caratterizzata da due componenti orizzontali orientate, rispettivamente, lungo la direzione longitudinale e trasversale del ponte, e da una componente verticale.

Le varie componenti sono descritte mediante opportuni spettri di risposta in accelerazione. Quest'ultimi sono definiti a partire dai parametri riportati nel seguito.

Stati Limite e relative Probabilità di Superamento

Il rispetto dei vari stati limite si considera conseguito:

- nei confronti degli stati limite di esercizio, qualora siano rispettate le verifiche relative allo stato limite di operatività (SLO) e di danno (SLD)
- nei confronti degli stati limite ultimi, qualora siano soddisfatte le verifiche relative allo stato limite di vita (SLV). Per quanto concerne il criterio di dimensionamento dell'impalcato, è da precisare come esso non debba subire danni per effetto delle azioni corrispondenti allo SLV, ossia delle massime sollecitazioni indotte dall'azione sismica di progetto;

Le probabilità di superamento P_{VR}, nel periodo di riferimento, da considerare per l'individuazione dell'azione sismica per ciascuno degli stati limite considerati, sono (Tb. 3.2.1 del NTC2008)

Stato Limite	Probabilità di superamento nel $ \begin{array}{c} \textbf{Probabilità di superamento } \textbf{V}_{\textbf{R}} \\ \textbf{P}_{\textbf{VR}} \end{array} $
SLO	81%
SLD	63%
SLV	10%

dalle quali, mediante la formula

$$T_{R} = -\frac{V_{R}}{\ln(1 - P_{V_{R}})}$$

Eq. [1] dell'Allegato A alle NTC2008

- PROGETTO DEFINITIVO -

si ottengono i seguenti tempi di ritorno dell'azione sismica:

Stato Limite	Tempo di ritorno dell'azione sismica T_R
SLO	45 anni
SLD	75 anni
SLV	712 anni

Caratteristiche del sottosuolo e condizioni topografiche

Le caratteristiche del sito ove andrà ad essere realizzata la struttura in progetto permettono di considerare una categoria di sottosuolo **TIPO** C e una condizione topografica **T1**.

Descrizione del moto sismico in superficie e sul piano di fondazione

Al fine di valutare i parametri per la definizione delle forme spettrali si è considerata l'ubicazione della costruzione in oggetto, identificabile con le coordinate geografiche:

facendo riferimento ai nodi n. 19835 – 19836 – 20057 – 20058 del reticolo riportati nell'allegato B del NTC2008, mediante interpolazione, si è ottenuto:

- PROGETTO DEFINITIVO -

Stato Limite di Riferimento	Tempo di ritorno dell'azione sismica - T _R [anni]	$\mathbf{a_g}$ $[\mathrm{m/s^2}]$	F ₀ [-]	T _C *
SLO	45	0,053	2,586	0,261
SLD	75	0,063	2,615	0,275
SLV	712	0,147	2,387	0,303

essendo:

a _g :accelerazione orizzontale massima del terreno;											
F _O :									dello	spettro	in
	accelera	zione	orizzo	ontal	e;						
T _C *	periodo	di i	inizio	del	tratto	a	velocità	costante	dello	spettro	di
accelerazione orizzontale.											

Gli spettri di risposta per i vari stati limiti sono riportati, sotto forma di grafici e tabelle, nel seguito.

- PROGETTO DEFINITIVO -

Tabelle e grafici riferiti agli spettri di risposta

Parametri e punti dello spettro di risposta orizzontale per lo stato limite:

Parametri indipendenti

raiameni muipenuemi				
STATO LIMITE	SLO			
a	0.053 g			
Fo	2.586			
T _C *	0.261 s			
Ss	1.500			
C _C	1.635			
S _T	1.000			
q	1.000			

Parametri dipendenti

 $T_D = 4.0 \cdot a_g / g + 1.6$

. a.aa. a.peae				
S	1.500			
η	1.000			
T _R	0.142 s			
Tc	0.427 s			
Tn	1.811 s			

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\rm B} = T_{\rm C} / 3$	(NTC-07 Eq. 3.2.8)
$T_C = C_C \cdot T_C^*$	(NTC-07 Eq. 3.2.7)
$T_D = 4.0 \cdot a_g / g + 1.6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti	dello	spettro	di	risposta

SLO

0.000 0.079 0.142 0.204 0.427 0.204 0.427 0.204 0.493 0.177 0.559 0.156 0.625 0.140 0.691 0.126 0.757 0.115 0.823 0.106 0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.355 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027
0.427 0.204 0.493 0.177 0.559 0.156 0.625 0.140 0.691 0.126 0.757 0.115 0.823 0.106 0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.493 0.177 0.559 0.156 0.625 0.140 0.691 0.126 0.767 0.115 0.823 0.106 0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.559 0.156 0.625 0.140 0.691 0.126 0.767 0.115 0.823 0.106 0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.625 0.140 0.691 0.126 0.757 0.115 0.823 0.106 0.888 0.988 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.691 0.126 0.757 0.115 0.823 0.106 0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.757 0.115 0.823 0.106 0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.823 0.106 0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.888 0.098 0.954 0.092 1.020 0.086 1.086 0.080 1.1086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.418 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
0.954 0.092 1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.020 0.086 1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.086 0.080 1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.152 0.076 1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.218 0.072 1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.284 0.068 1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.350 0.065 1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.416 0.062 1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.481 0.059 1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.547 0.056 1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.613 0.054 1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.679 0.052 1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.745 0.050 1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.811 0.048 1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
1.915 0.043 2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
2.019 0.039 2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
2.124 0.035 2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
2.228 0.032 2.332 0.029 2.436 0.027 2.541 0.025
2.332 0.029 2.436 0.027 2.541 0.025
2.436 0.027 2.541 0.025
2.541 0.025
2.645 0.023
2.749 0.021
2.853 0.019
2.958 0.018
3.062 0.017
3.166 0.016
3.270 0.015
3.375 0.014
3.479 0.013
3.583 0.012
3.687 0.012
3.792 0.011
3.896 0.010
4.000 0.010

- PROGETTO DEFINITIVO -

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLO

Parametri indipendenti

ratament mulpendend	
STATO LIMITE	SLO
a _{ov}	0.016 g
Ss	1.000
S _T	1.000
q	1.000
T _B	0.050 s
T _C	0.150 s
T _D	1.000 s

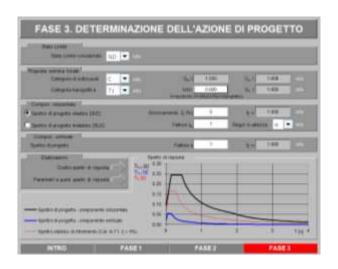
r drametir dipendenti		
F _v	0.801	
S	1.000	
η	1.000	

Espressioni dei parametri dipendenti

(NTC-08 Eq. 3.2.5) $S = S_S \cdot S_T$

 $\eta = 1/q$ (NTC-08 §. 3.2.3.5)

 $F_v = 1,35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0,5}$ (NTC-08 Eq. 3.2.11)


Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ T_B &\leq T < T_C \\ T_C &\leq T < T_D \\ T_D &\leq T \end{split} \quad \begin{aligned} S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{aligned}$$

nti	dello spettro	o di risposta
	T[s]	Se [g]
	0.000	0.016
в	0.050	0.042
c•	0.150	0.042
	0.235	0.027
	0.320	0.020
	0.405	0.016
	0.490	0.013
	0.575	0.011
	0.660	0.010
	0.745	0.009
	0.830	0.008
	0.915	0.007
D-	1.000	0.006
	1.094	0.005
	1.188	0.004
	1.281	0.004
	1.375	0.003
	1.469	0.003
	1.563	0.003
	1.656	0.002
	1.750	0.002
	1.844	0.002
	1.938	0.002
	2.031	0.002
	2.125	0.001
	2.219	0.001
	2.313	0.001
	2.406	0.001
	2.500	0.001
	2.594	0.001
	2.688	0.001
	2.781	0.001
	2.875	0.001
	2.969	0.001
	3.063	0.001
	3.156	0.001
	3.250	0.001
	3.344	0.001
	3.438	0.001
	3.531	0.001
	3.625	0.000
	3.719	0.000
	3.813	0.000
	3.906	0.000
	4.000	0.000

- PROGETTO DEFINITIVO -

Parametri e punti dello spettro di risposta orizzontale per lo stato limite:

(NTC-08 Eq. 3.2.5)

Parametri indipendenti

STATO LIMITE	SLD
a _o	0.063 g
F ₀	2.615
T _C *	0.275 s
Ss	1.500
Cc	1.608
S⊤	1.000
q	1.000

Parametri dipendenti

 $S = S_S \cdot S_T$

i aramear arpenaema	
S	1.500
η	1.000
T _R	0.147 s
T _C	0.442 s
Tn	1.850 s

Espressioni dei parametri dipendenti

$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\rm B} = T_{\rm C} / 3$	(NTC-07 Eq. 3.2.8)
$\mathbf{T}_{\mathbf{C}} = \mathbf{C}_{\mathbf{C}} \cdot \mathbf{T}_{\mathbf{C}}^*$	(NTC-07 Eq. 3.2.7)
$T_D = 4.0 \cdot a_g / g + 1.6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_{\rm d}(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\rm e}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T[s]	Se [g]
	0.000	0.094
T _B ◀	0.147	0.246
T _C ◀	0.442	0.246
	0.509	0.213
	0.576	0.188
	0.643	0.169
	0.710	0.153
	0.777	0.140
	0.844	0.129
	0.911	0.119
	0.979	0.111
	1.046	0.104
	1.113	0.098
	1.180	0.092
	1.247	0.087
	1.314	0.083
	1.381	0.079
	1.448	0.075
	1.515	0.072
	1.582	0.069
	1.649	0.066
	1.716	0.063
	1.783	0.061
T₽◀	1.850	0.059
	1.953	0.053
	2.055	0.048
	2.158	0.043
	2.260	0.039
	2.362	0.036
	2.465	0.033
	2.567	0.030
	2.669	0.028
	2.772	0.026
	2.874	0.024
	2.976	0.023 0.021
	3.079 3.181	0.021
	3.283	0.020
	3.386	0.018
	3.488	0.018
	3.591	0.017
	3.693	0.015
	3.795	0.014
	3.898	0.013
	4.000	0.013

- PROGETTO DEFINITIVO -

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLD

Darametri indinandenti

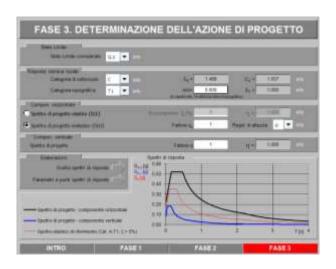
pendenti
SLD
0.021 g
1.000
1.000
1.000
0.050 s
0.150 s
1.000 s

r arametr arpenaema	
F _v	0.883
S	1.000
η	1.000

Espressioni dei parametri dipendenti

$$\eta = 1/q \tag{NTC-08 §. 3.2.3.5)}$$

$$F_{\rm v} = 1,35 \cdot F_{\rm o} \cdot \left(\frac{a_{\rm g}}{g}\right)^{0.5} \tag{NTC-08 Eq. 3.2.11}$$


Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ T_B &\leq T < T_C \\ T_C &\leq T < T_D \\ T_D &\leq T \end{split} \quad \begin{aligned} S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{aligned}$$

	T[s]	rodirispost Se[g]
Г	0.000	0.021
4	0.050	0.055
н	0.150	0.055
Г	0.235	0.035
	0.320	0.026
	0.405	0.020
	0.490	0.017
	0.575	0.014
	0.660	0.013
	0.745	0.011
	0.830	0.010
	0.915	0.009
	1.000	0.008
Т	1.094	0.007
F	1.188	0.006
T	1.281	0.005
H	1.375	0.004
T	1.469	0.004
	1.563	0.003
	1.656	0.003
	1.750	0.003
	1.844	0.002
	1.938	0.002
	2.031	0.002
	2.125	0.002
	2.219	0.002
	2.313	0.002
	2.406	0.001
	2.500	0.001
	2.594	0.001
	2.688	0.001
Г	2.781	0.001
F	2.875	0.001
	2.969	0.001
Г	3.063	0.001
	3.156	0.001
	3.250	0.001
Г	3.344	0.001
Г	3.438	0.001
Г	3.531	0.001
Г	3.625	0.001
	3.719	0.001
	3.813	0.001
	3.906	0.001
	4.000	0.001

- PROGETTO DEFINITIVO -

Parametri e punti dello spettro di risposta orizzontale per lo stato limite:

(NTC-08 Fg. 3.2.5)

Parametri indipendenti

i arameur maipenaem					
STATO LIMITE	SLV				
a _n	0.147 g				
Fo	2.387				
T _C *	0.303 s				
Ss	1.489				
C _C	1.557				
ST	1.000				
q	1.000				

Parametri dipendenti

i arameur dipendenti					
S	1.489				
η	1.000				
T _R	0.157 s				
T _C	0.472 s				
Tn	2.188 s				

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(1110 00 24: 0:2:0)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\rm B} = T_{\rm C} / 3$	(NTC-07 Eq. 3.2.8)
$\mathbf{T}_{\mathbf{C}} = \mathbf{C}_{\mathbf{C}} \cdot \mathbf{T}_{\mathbf{C}}^*$	(NTC-07 Eq. 3.2.7)
$T_D = 4.0 \cdot a_g / g + 1.6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \qquad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \qquad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_{\rm d}(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\rm e}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

ıntı		o di risposta				
	T [s]	Se [g]				
	0.000	0.219				
в◀	0.157	0.523				
c	0.472	0.523				
	0.554	0.446				
	0.635	0.388				
	0.717	0.344				
	0.799	0.309				
	0.880	0.280				
	0.962	0.256				
	1.044	0.236				
	1.126	0.219				
	1.207	0.204				
	1.289	0.191				
	1.371 1.453	0.180				
	1.453	0.170 0.161				
	1.616	0.161				
	1.698	0.145				
	1.780	0.145				
	1.861	0.133				
	1.943	0.127				
	2.025	0.122				
	2.106	0.117				
Б	2.188	0.113				
	2.274	0.104				
	2.361	0.097				
	2.447	0.090				
	2.533	0.084				
	2.620	0.079				
	2.706	0.074				
	2.792	0.069				
	2.878	0.065				
	2.965	0.061				
	3.051	0.058				
	3.137	0.055				
	3.224	0.052				
	3.310	0.049				
	3.396	0.047				
	3.482	0.045				
	3.569	0.042				
	3.655	0.040				
	3.741 3.827	0.039				
	3.827	0.037				
	4.000	0.035				
	4.000	0.034				

- PROGETTO DEFINITIVO -

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _{nv}	0.076 g
Ss	1.000
S _T	1.000
q	1.000
T _R	0.050 s
T _C	0.150 s
Tn	1.000 s

Parametri dipendenti

F _v	1.236
S	1.000
η	1.000

Espressioni dei parametri dipendenti

 $S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5} \label{eq:ntc-08}$

 $\eta \! = \! 1/q \hspace{1.5cm} \text{(NTC-08 §. 3.2.3.5)}$

 $F_{\rm v} = 1,35 \cdot F_{\rm o} \cdot \left(\frac{a_{\rm g}}{\rm g}\right)^{0.5} \tag{NTC-08 Eq. 3.2.11}$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 \leq T < T_B & \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C \leq T < T_D & \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

uiiu	dello spettro	
	T [s]	Se [g]
	0.000	0.076
$T_B \blacktriangleleft$	0.050	0.182
T_{C}	0.150	0.182
	0.235	0.116
	0.320	0.085
	0.405	0.067
	0.490	0.056
	0.575	0.047
	0.660	0.041
	0.745	0.037
	0.830	0.033
	0.915	0.030
$T_D \blacktriangleleft$	1.000	0.027
	1.094	0.023
	1.188	0.019
	1.281	0.017
	1.375	0.014
	1.469	0.013
	1.563	0.011
	1.656	0.010
	1.750	0.009
	1.844	0.008
	1.938	0.007
	2.031	0.007
	2.125	0.006
	2.219	0.006
	2.313	0.005
	2.406	0.005
	2.500	0.004
	2.594	0.004
	2.688	0.004
	2.781	0.004
	2.875	0.003
	2.969	0.003
	3.063	0.003
	3.156	0.003
	3.250	0.003
	3.344	0.002
	3.438	0.002
	3.531	0.002
	3.625	0.002
	3.719	0.002
	3.813	0.002
	3.906	0.002
	4.000	0.002

- PROGETTO DEFINITIVO -

MODELLAZIONE E SCHEMATIZZAZIONE STRUTTURALE

Tipo di analisi

Per lo studio della struttura si è impiegata un'analisi statica lineare equivalente. Al fine della determinazione delle componenti di accelerazione da applicare al manufatto, è stata effettuata un'analisi dinamica impiegando gli spettri di risposta di progetto riportati in precedenza, quindi, valutate le massime sollecitazioni ritenute significative per le verifiche strutturali, associate alle tre azioni sismiche, longitudinale, trasversale e verticale, si è risaliti ai valori medi dell'accelerazioni di progetto; esse, infine, sono state implementate nel modello agli elementi finiti allo scopo di valutare l'impegno della struttura in termini di caratteristiche della sollecitazione.

I valori delle componenti dell'accelerazione, per lo SLU, sono i seguenti:

$a_{g-x} = 0,474 g$	componente longitudinale;
$a_{g-y} = 0.199 g$	componente trasversale;
$a_{g-z} = 0.005 g$	componente verticale.

Masse attive

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai carichi gravitazionali dovuti al peso proprio strutturale e ai pesi propri degli elementi non strutturali agenti permanentemente sulla struttura.

- PROGETTO DEFINITIVO -

DEFINIZIONE DELLE MATRICI DI COMBINAZIONE

Rif.: p.to 2.5.3 del NTC2008

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

Combinazione sismica, impiegata per gli stati limite ultimi (SLU) e di esercizio connessi all'azione sismica E

$$E + G_1 + G_2 + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + ...$$

Nel seguito, si riporta la matrice di combinazione impiegata per le verifiche della struttura, valida sia per le condizioni di esercizio, sia per le condizioni allo stato limite ultimo relative al sisma. Quella riferita allo stato limite ultimo va a moltiplicare le sollecitazione derivanti dallo spettro di risposta associato allo SLV, quella riferita allo stato limite di esercizio, invece, combina le sollecitazioni derivanti dallo spettro di risposta associato allo SLD.

Tutte le matrice sopra richiamate si riferisco alle condizioni di carico elementari precedentemente illustrate.

PASSERELLA CICLO-PEDONALE - PROGETTO DEFINITIVO -

Combinazioni per l'analisi dello stato limite ultimo sismico (SLU)

SLV - Sisma	lg	82	Temp Variabile	Vento	Sisma X	Sisma Y	Sisma Z	Acqua	()	Folla I	Folla 2	Folla 3	Folla 4	Frenamento
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	-0,5	0	-1	-0,3	-0,3	0	0	0	0	0	0	0
3	1	1	-0,5	0	-1	-0,3	0,3	0	0	0	0	0	0	0
4	1	1	-0,5	0	-1	0,3	-0,3	0	0	0	0	0	0	0
5	1	1	-0,5	0	-1	0,3	0,3	0	0	0	0	0	0	0
6	1	1	-0,5	0	1	-0,3	-0,3	0	0	0	0	0	0	0
7	1	1	-0,5	0	1	-0,3	0,3	0	0	0	0	0	0	0
8	1	1	-0,5	0	1	0,3	-0,3	0	0	0	0	0	0	0
9	1	1	-0,5	0	1	0,3	0,3	0	0	0	0	0	0	0
10	1	1	-0,5	0	-0,3	-1	-0,3	0	0	0	0	0	0	0
11	1	1	-0,5	0	0,3	-1	-0,3	0	0	0	0	0	0	0
12	1	1	-0,5	0	-0,3	-1	0,3	0	0	0	0	0	0	0
13	1	1	-0,5	0	0,3	-1	0,3	0	0	0	0	0	0	0
14	1	1	-0,5	0	-0,3	1	-0,3	0	0	0	0	0	0	0
15	1	1	-0,5	0	0,3	1	-0,3	0	0	0	0	0	0	0
16	1	1	-0,5	0	-0,3	1	0,3	0	0	0	0	0	0	0
17	1	1	-0,5	0	0,3	1	0,3	0	0	0	0	0	0	0
18	1	1	-0,5	0	-0,3	-0,3	-1	0	0	0	0	0	0	0
19	1	1	-0,5	0	-0,3	0,3	-1	0	0	0	0	0	0	0
20	1	1	-0,5	0	0,3	-0,3	-1	0	0	0	0	0	0	0
21	1	1	-0,5	0	0,3	0,3	-1	0	0	0	0	0	0	0
22	1	1	-0,5	0	-0,3	-0,3	1	0	0	0	0	0	0	0
23	1	1	-0,5	0	-0,3	0,3	1	0	0	0	0	0	0	0
24	1	1	-0,5	0	0,3	-0,3	1	0	0	0	0	0	0	0
25	1	1	-0,5	0	0,3	0,3	1	0	0	0	0	0	0	0
26	1	1	-0,5	0	-1	-0,3	-0,3	0	0	0	0	0	0	0
27	1	1	-0,5	0	-1	-0,3	0,3	0	0	0	0	0	0	0
28	1	1	-0,5	0	-1	0,3	-0,3	0	0	0	0	0	0	0
29	1	1	-0,5	0	-1	0,3	0,3	0	0	0	0	0	0	0
30	1	1	-0,5	0	1	-0,3	-0,3	0	0	0	0	0	0	0
31	1	1	-0,5	0	1	-0,3	0,3	0	0	0	0	0	0	0

- PROGETTO DEFINITIVO -

			1	1	1	1	1					1	1	
32	1	1	-0,5	0	1	0,3	-0,3	0	0	0	0	0	0	0
33	1	1	-0,5	0	1	0,3	0,3	0	0	0	0	0	0	0
34	1	1	-0,5	0	-0,3	-1	-0,3	0	0	0	0	0	0	0
35	1	1	-0,5	0	0,3	-1	-0,3	0	0	0	0	0	0	0
36	1	1	-0,5	0	-0,3	-1	0,3	0	0	0	0	0	0	0
37	1	1	-0,5	0	0,3	-1	0,3	0	0	0	0	0	0	0
38	1	1	-0,5	0	-0,3	1	-0,3	0	0	0	0	0	0	0
39	1	1	-0,5	0	0,3	1	-0,3	0	0	0	0	0	0	0
40	1	1	-0,5	0	-0,3	1	0,3	0	0	0	0	0	0	0
41	1	1	-0,5	0	0,3	1	0,3	0	0	0	0	0	0	0
42	1	1	-0,5	0	-0,3	-0,3	-1	0	0	0	0	0	0	0
43	1	1	-0,5	0	-0,3	0,3	-1	0	0	0	0	0	0	0
44	1	1	-0,5	0	0,3	-0,3	-1	0	0	0	0	0	0	0
45	1	1	-0,5	0	0,3	0,3	-1	0	0	0	0	0	0	0
46	1	1	-0,5	0	-0,3	-0,3	1	0	0	0	0	0	0	0
47	1	1	-0,5	0	-0,3	0,3	1	0	0	0	0	0	0	0
48	1	1	-0,5	0	0,3	-0,3	1	0	0	0	0	0	0	0
49	1	1	-0,5	0	0,3	0,3	1	0	0	0	0	0	0	0

PASSERELLA CICLO-PEDONALE - PROGETTO DEFINITIVO -

C.3 DEFINIZIONE DELLE CONDIZIONI DI CARICO

Per l'analisi della struttura sono state considerate e analizzate le seguenti condizioni di carico elementari. Ad ognuna di esse corrisponde un riferimento numerico che ci consentirà di individuarle nelle diverse combinazioni di carico con le quali sono state definite le matrici di combinazione per la progettazione della struttura in questione.

CONDIZIONE DI CARICO ELEMENTARE	NUMERO DI RIFERIMENTO NELLA MATRICE DI COMBINAZIONE	DESCRIZIONE	TIPOLOGIA DI CARICO
Carichi Permanenti Elementi Strutturali	1	Azioni relative al peso proprio permanente di tipo strutturale	\mathbf{g}_{l}
CARICHI PERMANENTI ELEMENTI NON STRUTTURALI	2	Azioni relative al peso proprio permanente di tipo non strutturale	g_2
TEMP. VARIABILE	3	Azioni dovute ad un gradiente di temperatura sull'impalcato	E ₃
VENTO	4	Azione del vento sulla agente direttamente e indirettamente sulla struttura	\mathbf{q}_{5}
SISMA X	5	Azione del Sisma nella direzione longitudinale del ponte	q_6
SISMA Y	6	Azione del Sisma nella direzione orizzontale e perpendicolare al ponte	q_6
SISMA Z	7	Azione del Sisma nella direzione verticale	q_6
ACQUA	8	Azione dovuta alla pressione idraulica sulla pila	q_9
()	9	()	()
FOLLA 1	10	Condizione di carico dovuta alla "configurazione n.1"	$q_1 + q_2$
FOLLA 2	11	Condizione di carico dovuta alla "configurazione n.2"	$q_1 + q_2$

- PROGETTO DEFINITIVO -

FOLLA 3	12	Condizione di carico dovuta alla "configurazione n.3"	$q_1 + q_2$
FOLLA 4	13	Condizione di carico dovuta alla "configurazione n.4"	$q_1 + q_2$
FRENAMENTO	14	Azioni dovute al frenamento e all'accelerazione dei carichi mobili	q_3

DEFINIZIONE DELLE MATRICI DI COMBINAZIONE

Rif.: p.to 2.5.3 del NTC2008

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU)

$$\gamma_{\rm GI} \cdot G_{_1} + \gamma_{\rm G2} \cdot G_{_2} + \gamma_{\rm OI} \cdot Q_{_{k1}} + \gamma_{\rm O2} \cdot \Psi_{_{02}} \cdot Q_{_{k2}} + \gamma_{\rm O3} \cdot \Psi_{_{03}} \cdot Q_{_{k3}} + ...$$

Combinazione caratteristica (rara), impiegata per gli stati limite di esercizio (SLE) irreversibili

$$\boldsymbol{G}_{1} + \boldsymbol{G}_{2} + \boldsymbol{Q}_{k1} + \boldsymbol{\Psi}_{02} \cdot \boldsymbol{Q}_{k2} + \boldsymbol{\Psi}_{03} \cdot \boldsymbol{Q}_{k3} + ...$$

Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili

$$G_{_{1}}\!+\!G_{_{2}}\!+\!\Psi_{_{11}}\!\cdot\!Q_{_{k1}}\!+\!\Psi_{_{22}}\!\cdot\!Q_{_{k2}}\!+\!\Psi_{_{23}}\!\cdot\!Q_{_{k3}}\!+\!...$$

Combinazione quasi permanente (SLE), impiegata per gli effetti a lungo termine

$$\boldsymbol{G}_{1} + \boldsymbol{G}_{2} + \boldsymbol{\Psi}_{21} \cdot \boldsymbol{Q}_{k1} + \boldsymbol{\Psi}_{22} \cdot \boldsymbol{Q}_{k2} + \boldsymbol{\Psi}_{23} \cdot \boldsymbol{Q}_{k3} + ...$$

Nel seguito, si riportano le matrici di combinazioni impiegate per le verifiche della struttura, sia nelle sue condizioni di esercizio, sia nelle sue condizioni allo stato limite ultimo.

Esse si riferisco alle condizioni di carico elementari precedentemente illustrate, combinate secondo quanto disposto dal NTC2008 - « *Norme tecniche per le costruzioni* ».

- PROGETTO DEFINITIVO -

Combinazioni per l'analisi dello stato limite ultimo (SLU)

SEU	l8	82	Temp Variabile	Vento	Sisma X	Sisma Y	Sisma Z	Acqua	()	Folla 1	Folla 2	Folla 3	Folla 4	Frenamento
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1,35	1,35	-0,9	-0,9	0	0	0	0	0	0	0	0	0	0
3	1,35	1,35	-0,9	-0,9	0	0	0	0	0	1,35	1,35	1,35	1,35	0
4	1,35	1,35	-0,9	-0,9	0	0	0	0	0	1,35	1,35	0	0	0
5	1,35	1,35	-0,9	-0,9	0	0	0	0	0	0	0	1,35	1,35	0
6	1,35	1,35	-0,9	-0,9	0	0	0	0	0	1,35	0	1,35	0	0
7	1,35	1,35	-0,9	-0,9	0	0	0	0	0	0	1,35	0	1,35	0
8	1,35	1,35	-0,9	0,9	0	0	0	0	0	0	0	0	0	0
9	1,35	1,35	-0,9	0,9	0	0	0	0	0	1,35	1,35	1,35	1,35	0
10	1,35	1,35	-0,9	0,9	0	0	0	0	0	1,35	1,35	0	0	0
11	1,35	1,35	-0,9	0,9	0	0	0	0	0	0	0	1,35	1,35	0
12	1,35	1,35	-0,9	0,9	0	0	0	0	0	1,35	0	1,35	0	0
13	1,35	1,35	-0,9	0,9	0	0	0	0	0	0	1,35	0	1,35	0
14	1,35	1,35	0,9	-0,9	0	0	0	0	0	0	0	0	0	0
15	1,35	1,35	0,9	-0,9	0	0	0	0	0	1,35	1,35	1,35	1,35	0
16	1,35	1,35	0,9	-0,9	0	0	0	0	0	1,35	1,35	0	0	0
17	1,35	1,35	0,9	-0,9	0	0	0	0	0	0	0	1,35	1,35	0
18	1,35	1,35	0,9	-0,9	0	0	0	0	0	1,35	0	1,35	0	0
19	1,35	1,35	0,9	-0,9	0	0	0	0	0	0	1,35	0	1,35	0
20	1,35	1,35	0,9	0,9	0	0	0	0	0	0	0	0	0	0
21	1,35	1,35	0,9	0,9	0	0	0	0	0	1,35	1,35	1,35	1,35	0
22	1,35	1,35	0,9	0,9	0	0	0	0	0	1,35	1,35	0	0	0
23	1,35	1,35	0,9	0,9	0	0	0	0	0	0	0	1,35	1,35	0
24	1,35	1,35	0,9	0,9	0	0	0	0	0	1,35	0	1,35	0	0
25	1,35	1,35	0,9	0,9	0	0	0	0	0	0	1,35	0	1,35	0
26	1,35	1,35	-0,9	-1,5	0	0	0	0	0	0	0	0	0	0
27	1,35	1,35	0,9	-1,5	0	0	0	0	0	0	0	0	0	0
28	1,35	1,35	-0,9	1,5	0	0	0	0	0	0	0	0	0	0
29	1,35	1,35	0,9	1,5	0	0	0	0	0	0	0	0	0	0
30	1,35	1,35	-1,5	-0,9	0	0	0	0	0	0	0	0	0	0
31	1,35	1,35	-1,5	0,9	0	0	0	0	0	0	0	0	0	0
32	1,35	1,35	1,5	-0,9	0	0	0	0	0	0	0	0	0	0

- PROGETTO DEFINITIVO -

34 1,35 1,35 0,9 0,9 0 0 0 0 0 0 0 0 0	22	1.05	1.05	1.5	0.0	_	_	_	0	0	_	_	_	0	0
35	33	1,35	1,35	1,5	0,9	0	0	0	0	0	0	0	0	0	0
36	-	-													
37	-														
38															
39		-													
40 1,35 1,35 0.9 -0.9 0 <	-														
41 1,35 1,35 0.9 0.9 0 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-														
42 1 1 -0.9 -0.9 0<	-				-										
43 1 1 -0,9 -0,9 0 0 0 0 1,35 1,35 1,35 0 44 1 1 -0,9 -0,9 0 0 0 0 1,35 1,35 0 0 45 1 1 -0,9 -0,9 0 0 0 0 0 0 1,35 0 0 46 1 1 -0,9 -0,9 0 0 0 0 0 1,35 0 1,35 0 0 47 1 1 -0,9 -0,9 0	_	1,35	1,35		-										-1,35
44 1 1 -0.9 -0.9 0 0 0 0 1,35 1,35 0 0 0 45 1 1 -0.9 -0.9 0 0 0 0 0 1,35 0 0 46 1 1 -0.9 -0.9 0 0 0 0 0 1,35 0 1,35 0 47 1 1 -0.9 -0.9 0 <td></td>															
45 1 1 -0.9 -0.9 0 0 0 0 0 1,35 0 1,35 0 46 1 1 -0.9 -0.9 0 0 0 0 1,35 0 1,35 0 0 47 1 1 -0.9 -0.9 0 0 0 0 0 1,35 0 1,35 0 48 1 1 -0.9 0.9 0<	43	1		-0,9						0	1,35	1,35			
46 1 1 -0,9 -0,9 0 0 0 0 1,35 0 1,35 0 0 47 1 1 -0,9 -0,9 0			1	-0,9	-									0	
47 1 1 -0,9 -0,9 0 0 0 0 0 1,35 0 1,35 0 48 1 1 -0,9 0,9 0	45	1	1	-0,9	-0,9	0	0	0	0	0	0	0	1,35	1,35	0
48 1 1 -0.9 0.9 0 </td <td>46</td> <td>1</td> <td>1</td> <td>-0,9</td> <td>-0,9</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1,35</td> <td>0</td> <td>1,35</td> <td>0</td> <td>0</td>	46	1	1	-0,9	-0,9	0	0	0	0	0	1,35	0	1,35	0	0
49 1 1 -0,9 0,9 0 0 0 0 1,35 1,35 1,35 0 0 50 1 1 -0,9 0,9 0 0 0 0 1,35 1,35 0 0 0 51 1 1 -0,9 0,9 0 0 0 0 0 1,35 1,35 0 0 52 1 1 -0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 53 1 1 -0,9 0,9 0	47	1	1	-0,9	-0,9	0	0	0	0	0	0	1,35	0	1,35	0
50 1 1 -0,9 0,9 0 0 0 0 1,35 1,35 0 0 0 51 1 1 -0,9 0,9 0 0 0 0 0 1,35 1,35 0 0 52 1 1 -0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 53 1 1 -0,9 0,9 0 <td>48</td> <td>1</td> <td>1</td> <td>-0,9</td> <td>0,9</td> <td>0</td>	48	1	1	-0,9	0,9	0	0	0	0	0	0	0	0	0	0
51 1 1 -0,9 0,9 0 0 0 0 0 1,35 1,35 0 52 1 1 -0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 53 1 1 -0,9 0,9 0 0 0 0 0 1,35 0 1,35 0 54 1 1 0,9 -0,9 0 <td>49</td> <td>1</td> <td>1</td> <td>-0,9</td> <td>0,9</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1,35</td> <td>1,35</td> <td>1,35</td> <td>1,35</td> <td>0</td>	49	1	1	-0,9	0,9	0	0	0	0	0	1,35	1,35	1,35	1,35	0
52 1 1 -0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 53 1 1 -0,9 0,9 0 0 0 0 0 1,35 0 1,35 0 54 1 1 0,9 -0,9 0 <t< td=""><td>50</td><td>1</td><td>1</td><td>-0,9</td><td>0,9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1,35</td><td>1,35</td><td>0</td><td>0</td><td>0</td></t<>	50	1	1	-0,9	0,9	0	0	0	0	0	1,35	1,35	0	0	0
53 1 1 -0,9 0,9 0 0 0 0 0 1,35 0 1,35 0 <	51	1	1	-0,9	0,9	0	0	0	0	0	0	0	1,35	1,35	0
54 1 1 0.9 -0.9 0 </td <td>52</td> <td>1</td> <td>1</td> <td>-0,9</td> <td>0,9</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1,35</td> <td>0</td> <td>1,35</td> <td>0</td> <td>0</td>	52	1	1	-0,9	0,9	0	0	0	0	0	1,35	0	1,35	0	0
55 1 1 0,9 -0,9 0 0 0 0 1,35 1,35 1,35 0 0 56 1 1 0,9 -0,9 0 0 0 0 1,35 1,35 0 0 0 57 1 1 0,9 -0,9 0 0 0 0 0 1,35 1,35 0 0 58 1 1 0,9 -0,9 0 0 0 0 1,35 0 1,35 0 0 59 1 1 0,9 -0,9 0 0 0 0 0 1,35 0 1,35 0 0 60 1 1 0,9 0,9 0 <t< td=""><td>53</td><td>1</td><td>1</td><td>-0,9</td><td>0,9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1,35</td><td>0</td><td>1,35</td><td>0</td></t<>	53	1	1	-0,9	0,9	0	0	0	0	0	0	1,35	0	1,35	0
56 1 1 0.9 -0.9 0 0 0 0 1,35 1,35 0 <	54	1	1	0,9	-0,9	0	0	0	0	0	0	0	0	0	0
57 1 1 0,9 -0,9 0 0 0 0 0 1,35 1,35 0 58 1 1 0,9 -0,9 0 0 0 0 1,35 0 1,35 0 0 59 1 1 0,9 -0,9 0 0 0 0 0 0 0 1,35 0 1,35 0 60 1 1 0,9 0,9 0	55	1	1	0,9	-0,9	0	0	0	0	0	1,35	1,35	1,35	1,35	0
58 1 1 0,9 -0,9 0 0 0 0 1,35 0 1,35 0 0 59 1 1 0,9 -0,9 0 0 0 0 0 1,35 0 1,35 0 60 1 1 0,9 0,9 0 <td< td=""><td>56</td><td>1</td><td>1</td><td>0,9</td><td>-0,9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1,35</td><td>1,35</td><td>0</td><td>0</td><td>0</td></td<>	56	1	1	0,9	-0,9	0	0	0	0	0	1,35	1,35	0	0	0
59 1 1 0,9 -0,9 0 0 0 0 0 1,35 0 1,35 0 60 1 1 0,9 0,9 0	57	1	1	0,9	-0,9	0	0	0	0	0	0	0	1,35	1,35	0
60 1 1 0,9 0,9 0 <td>58</td> <td>1</td> <td>1</td> <td>0,9</td> <td>-0,9</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1,35</td> <td>0</td> <td>1,35</td> <td>0</td> <td>0</td>	58	1	1	0,9	-0,9	0	0	0	0	0	1,35	0	1,35	0	0
61 1 1 0,9 0,9 0 0 0 0 1,35 1,35 1,35 1,35 0 62 1 1 0,9 0,9 0 0 0 0 1,35 1,35 0 0 0 63 1 1 0,9 0,9 0 0 0 0 0 0 1,35 1,35 0 0 64 1 1 0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 65 1 1 0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 66 1 1 -0,9 -1,5 0 <t< td=""><td>59</td><td>1</td><td>1</td><td>0,9</td><td>-0,9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1,35</td><td>0</td><td>1,35</td><td>0</td></t<>	59	1	1	0,9	-0,9	0	0	0	0	0	0	1,35	0	1,35	0
62 1 1 0,9 0,9 0 0 0 0 1,35 1,35 0 0 0 63 1 1 0,9 0,9 0 0 0 0 0 0 1,35 1,35 0 64 1 1 0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 65 1 1 0,9 0,9 0 0 0 0 0 1,35 0 1,35 0 66 1 1 -0,9 -1,5 0	60	1	1	0,9	0,9	0	0	0	0	0	0	0	0	0	0
63 1 1 0,9 0,9 0 0 0 0 0 0 1,35 1,35 0 64 1 1 0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 65 1 1 0,9 0,9 0 0 0 0 0 1,35 0 1,35 0 66 1 1 -0,9 -1,5 0	61	1	1	0,9	0,9	0	0	0	0	0	1,35	1,35	1,35	1,35	0
64 1 1 0,9 0,9 0 0 0 0 1,35 0 1,35 0 0 65 1 1 0,9 0,9 0 0 0 0 0 1,35 0 1,35 0 66 1 1 -0,9 -1,5 0 <td< td=""><td>62</td><td>1</td><td>1</td><td></td><td>0,9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1,35</td><td>1,35</td><td>0</td><td>0</td><td>0</td></td<>	62	1	1		0,9	0	0	0	0	0	1,35	1,35	0	0	0
65 1 1 0,9 0,9 0 0 0 0 0 1,35 0 1,35 0 66 1 1 -0,9 -1,5 0	63	1	1	0,9	0,9	0	0	0	0	0	0	0	1,35	1,35	0
66 1 1 -0,9 -1,5 0<	64	1	1	0,9	0,9	0	0	0	0	0	1,35	0	1,35	0	0
67 1 1 0,9 -1,5 0 </td <td>65</td> <td>1</td> <td>1</td> <td>0,9</td> <td>0,9</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1,35</td> <td>0</td> <td>1,35</td> <td>0</td>	65	1	1	0,9	0,9	0	0	0	0	0	0	1,35	0	1,35	0
68 1 1 -0,9 1,5 0 </td <td>66</td> <td>1</td> <td>1</td> <td>-0,9</td> <td>-1,5</td> <td>0</td>	66	1	1	-0,9	-1,5	0	0	0	0	0	0	0	0	0	0
69 1 1 0,9 1,5 0 <td>67</td> <td>1</td> <td>1</td> <td>0,9</td> <td>-1,5</td> <td>0</td>	67	1	1	0,9	-1,5	0	0	0	0	0	0	0	0	0	0
70 1 1 -1,5 -0,9 0<	68	1	1	-0,9	1,5	0	0	0	0	0	0	0	0	0	0
71 1 1 -1,5 0,9 0 0 0 0 0 0 0 0	69	1	1	0,9	1,5	0	0	0	0	0	0	0	0	0	0
	70	1	1	-1,5	-0,9	0	0	0	0	0	0	0	0	0	0
72 1 1 1,5 -0,9 0 0 0 0 0 0 0 0 0	71	1	1	-1,5	0,9	0	0	0	0	0	0	0	0	0	0
	72	1	1	1,5	-0,9	0	0	0	0	0	0	0	0	0	0

- PROGETTO DEFINITIVO -

73	1	1	1,5	0,9	0	0	0	0	0	0	0	0	0	0
74	1	1	-0,9	-0,9	0	0	0	0	0	0	0	0	0	1,35
75	1	1	-0,9	0,9	0	0	0	0	0	0	0	0	0	1,35
76	1	1	0,9	-0,9	0	0	0	0	0	0	0	0	0	1,35
77	1	1	0,9	0,9	0	0	0	0	0	0	0	0	0	1,35
<i>78</i>	1	1	-0,9	-0,9	0	0	0	0	0	0	0	0	0	-1,35
79	1	1	-0,9	0,9	0	0	0	0	0	0	0	0	0	-1,35
80	1	1	0,9	-0,9	0	0	0	0	0	0	0	0	0	-1,35
81	1	1	0,9	0,9	0	0	0	0	0	0	0	0	0	-1,35

Combinazioni Rara per l'analisi dello stato limite di esercizio (SLE)

SLE - Rara	l^{g}	82	Temp Variabile	Vento	Sisma X	Sisma Y	Sisma Z	Acqua	()	Folla I	Folla 2	Folla 3	Folla 4	Frenamento
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	-0,6	-0,6	0	0	0	0	0	0	0	0	0	0
3	1	1	-0,6	-0,6	0	0	0	0	0	1	1	1	1	0
4	1	1	-0,6	-0,6	0	0	0	0	0	1	1	0	0	0
5	1	1	-0,6	-0,6	0	0	0	0	0	0	0	1	1	0
6	1	1	-0,6	-0,6	0	0	0	0	0	1	0	1	0	0
7	1	1	-0,6	-0,6	0	0	0	0	0	0	1	0	1	0
8	1	1	-0,6	0,6	0	0	0	0	0	0	0	0	0	0
9	1	1	-0,6	0,6	0	0	0	0	0	1	1	1	1	0
10	1	1	-0,6	0,6	0	0	0	0	0	1	1	0	0	0
11	1	1	-0,6	0,6	0	0	0	0	0	0	0	1	1	0
12	1	1	-0,6	0,6	0	0	0	0	0	1	0	1	0	0
13	1	1	-0,6	0,6	0	0	0	0	0	0	1	0	1	0
14	1	1	0,6	-0,6	0	0	0	0	0	0	0	0	0	0
15	1	1	0,6	-0,6	0	0	0	0	0	1	1	1	1	0
16	1	1	0,6	-0,6	0	0	0	0	0	1	1	0	0	0
17	1	1	0,6	-0,6	0	0	0	0	0	0	0	1	1	0
18	1	1	0,6	-0,6	0	0	0	0	0	1	0	1	0	0
19	1	1	0,6	-0,6	0	0	0	0	0	0	1	0	1	0
20	1	1	0,6	0,6	0	0	0	0	0	0	0	0	0	0
21	1	1	0,6	0,6	0	0	0	0	0	1	1	1	1	0
22	1	1	0,6	0,6	0	0	0	0	0	1	1	0	0	0

- PROGETTO DEFINITIVO -

23	1	1	0,6	0,6	0	0	0	0	0	0	0	1	1	0
24	1	1	0,6	0,6	0	0	0	0	0	1	0	1	0	0
25	1	1	0,6	0,6	0	0	0	0	0	0	1	0	1	0
26	1	1	-0,6	-1	0	0	0	0	0	0	0	0	0	0
27	1	1	0,6	-1	0	0	0	0	0	0	0	0	0	0
28	1	1	-0,6	1	0	0	0	0	0	0	0	0	0	0
29	1	1	0,6	1	0	0	0	0	0	0	0	0	0	0
30	1	1	-1	-0,6	0	0	0	0	0	0	0	0	0	0
31	1	1	-1	0,6	0	0	0	0	0	0	0	0	0	0
32	1	1	1	-0,6	0	0	0	0	0	0	0	0	0	0
33	1	1	1	0,6	0	0	0	0	0	0	0	0	0	0
34	1	1	-0,6	-0,6	0	0	0	0	0	0	0	0	0	1
35	1	1	-0,6	0,6	0	0	0	0	0	0	0	0	0	1
36	1	1	0,6	-0,6	0	0	0	0	0	0	0	0	0	1
37	1	1	0,6	0,6	0	0	0	0	0	0	0	0	0	1
38	1	1	-0,6	-0,6	0	0	0	0	0	0	0	0	0	-1
39	1	1	-0,6	0,6	0	0	0	0	0	0	0	0	0	-1
40	1	1	0,6	-0,6	0	0	0	0	0	0	0	0	0	-1
41	1	1	0,6	0,6	0	0	0	0	0	0	0	0	0	-1

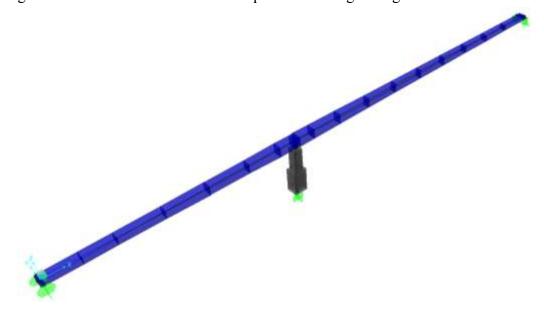
Combinazioni Frequente per l'analisi dello stato limite di esercizio (SLE)

SLV - Sisma	18	2	√ Temp Variabile	Vento	5 Sisma X	9 Sisma Y	2 Sisma Z	∞ Acqua	9	01 Folla I	11 Folla 2	Folla 3	Folla 4	Frenamento
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	-0,5	-0,2	0	0	0	0	0	0	0	0	0	0
3	1	1	0,5	-0,2	0	0	0	0	0	0	0	0	0	0
4	1	1	-0,5	0,2	0	0	0	0	0	0	0	0	0	0
5	1	1	0,5	0,2	0	0	0	0	0	0	0	0	0	0
6	1	1	-0,6	0	0	0	0	0	0	0	0	0	0	0
7	1	1	0,6	0	0	0	0	0	0	0	0	0	0	0

- PROGETTO DEFINITIVO -

Combinazioni Quasi Permanente per l'analisi dello stato limite di esercizio (SLE)

SLV - Sisma	18	82	Temp Variabile	Vento	Sisma X	Sisma Y	Sisma Z	Acqua	()	Folla I	Folla 2	Folla 3	Folla 4	Frenamento
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	-0,5	0	0	0	0	0	0	0	0	0	0	0
3	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0



- PROGETTO DEFINITIVO -

C.4 MODELLAZIONE E SCHEMATIZZAZIONE STRUTTURALE

Al fine di valutare le sollecitazioni agenti sulla struttura, nonché gli spostamenti che vanno ad interessarla, si è fatto riferimento al modello strutturale agli elementi finiti descritto nel seguito. Un'immagine tridimensionale del modello è riportata nella figura seguente.

MATERIALI

I materiali messi in conto nel modello sono:

Acciaio: (colore blu nel modello)

 $E_s = 21000 \text{ kN/m}^2$

 $v_s = 0.30$

Calcestruzzo (colore grigio nel modello)

 $E_{cls} = 3000 \text{ kN/m}^2$

 $v_{\rm cls} = 0.20$

- PROGETTO DEFINITIVO -

GEOMETRIA

Lo schema del modello di riferimento è riportato nelle figure seguenti, in esse sono inoltre riportate le numerazioni degli elementi e la numerazione delle aste, così da potervi fare riferimento nella presentazione dei risultati numerici.

- PROGETTO DEFINITIVO -

Le coordinate dei nodi sono:

Nodo	\boldsymbol{x}	y	z
11000	[cm]	[cm]	[cm]
101	-60	0	0
102	0	0	0
103	855	0	0
104	1655	0	0
105	2855	0	0
106	4055	0	0
107	5255	0	0
108	6255	0	0
109	6780	0	0
110	6855	0	0
111	6930	0	0
112	7455	0	0
113	8455	0	0
114	9655	0	0
115	10855	0	0
116	12055	0	0
117	13255	0	0
118	14455	0	0
119	15655	0	0
120	16855	0	0
121	18110	0	0
122	18170	0	0
301	6855	0	-1805
302	6855	0	-1680
303	6855	0	-1580
304	6855	0	-1480
305	6855	0	-1380
306	6855	0	-1280
307	6855	0	-1180
308	6855	0	-1080
309	6855	0	-956
310	6855	0	-856
311	6855	0	-756
312	6855	0	-656
313	6855	0	-556
314	6855	0	-456
315	6855	0	-356
316	6855	0	-246
317	6855	0	-129
401	0	-200	0

- PROGETTO DEFINITIVO -

402	0	200	0
403	18110	-200	0
404	18110	200	0

Le lunghezza delle aste e la loro disposizione all'interno del modello con riferimento ai nodi sono indicate nella tabella seguente:

A a4a	Lunghezza	Nodo	Nodo
Asta	[cm]	i	j
101	60	101	102
102	855	102	103
103	800	103	104
104	1200	104	105
105	1200	105	106
106	1200	106	107
107	1000	107	108
108	525	108	109
109	75	109	110
201	75	110	111
202	525	111	112
203	1000	112	113
204	1200	113	114
205	1200	114	115
206	1200	115	116
207	1200	116	117
208	1200	117	118
209	1200	118	119
210	1200	119	120
211	1255	120	121
212	60	121	122
301	125	301	302
311	100	302	303
312	100	303	304
313	100	304	305
314	100	305	306
315	100	306	307
316	100	307	308
317	124	308	309
321	100	309	310
322	100	310	311
323	100	311	312
324	100	312	313
325	100	313	314

- PROGETTO DEFINITIVO -

326 100 314 315 327 110 315 316 331 117 316 317	
331 117 316 317	326
	327
101	331
401 200 401 102	401
402 200 402 102	402
403 200 403 121	403
404 200 404 121	404
405 129 317 110	405

La denominazione delle sezioni trasversali delle aste, indicate per le due estremità, sono riportate nel seguito:

Asta	Sezione	Sezione
	i	j
101	1202	1202
102	1202	1191
103	1190	1181
104	1180	1171
105	1170	1161
106	1160	1151
107	1150	1141
108	1140	1131
109	1130	1122
201	1122	1111
202	1110	1101
203	1100	1091
204	1090	1082
205	1082	1071
206	1070	1061
207	1060	1051
208	1050	1041
209	1040	1031
210	1030	1021
211	1020	1012
212	1012	1012
301	R	R
$401 \div 405$	K	K
311÷ 317	P1	P1
321÷ 327	P2	P2
331	P3	P3

- PROGETTO DEFINITIVO -

Una sintesi delle caratteristiche geometriche delle sezioni sono indicate in tabella:

Sezioni	Materiale	Area	$oldsymbol{J_{torsionale}}$	J_{3-3}	$oldsymbol{J}_{2 ext{-}2}$
Sczioni	Maieriaie	$[cm^2]$	[cm ⁴]	[cm ⁴]	[cm ⁴]
1012	Acciaio	4121	17286322	9829000	81340000
1020	Acciaio	3976	23811571	16340000	62070000
1021	Acciaio	4934	23811571	20660000	71330000
1030	Acciaio	4891	28488246	29230000	61470000
1031	Acciaio	4998	28489989	30150000	62630000
1032	Acciaio	4998	28489989	30150000	62630000
1040	Acciaio	4905	32477475	37660000	53470000
1041	Acciaio	4935	32480267	37790000	53470000
1042	Acciaio	4935	32480267	37790000	53470000
1050	Acciaio	4986	36563916	45670000	51510000
1051	Acciaio	4916	36563916	44420000	50770000
1052	Acciaio	4916	36563916	44420000	50770000
1060	Acciaio	4999	41477208	51380000	51990000
1061	Acciaio	4394	41479311	45680000	48900000
1062	Acciaio	4394	41479311	45680000	48900000
1070	Acciaio	4500	47835172	50970000	53040000
1071	Acciaio	3496	47835172	37610000	46860000
1072	Acciaio	3496	47835172	46860000	37610000
1082	Acciaio	3593	56066603	40400000	53660000
1090	Acciaio	3086	66910890	43510000	69370000
1091	Acciaio	4885	66910890	59380000	78660000
1100	Acciaio	5119	75732906	61210000	99430000
1101	Acciaio	5801	75732906	69790000	104100000
1110	Acciaio	5875	79584984	69160000	113200000
1111	Acciaio	7534	80498088	78540000	166900000
1122	Acciaio	7545	80999944	78360000	169000000
1130	Acciaio	7520	79738022	77690000	166500000
1131	Acciaio	5866	78827801	68400000	113000000
1140	Acciaio	5745	70137366	64120000	102400000
1141	Acciaio	5063	70137366	56240000	97740000
1150	Acciaio	4775	56577648	47660000	78460000
1151	Acciaio	4357	56575191	43230000	75540000
1160	Acciaio	4183	44280580	35090000	66800000
1161	Acciaio	3350	44278407	27490000	57320000
1162	Acciaio	3350	44278407	27490000	57320000
1170	Acciaio	3232	34974033	21090000	54590000
1171	Acciaio	3107	34972101	20620000	51510000
1172	Acciaio	3107	34972101	20620000	51510000
1180	Acciaio	3036	27295574	14590000	53030000
1181	Acciaio	3013	27293015	14550000	53030000

- PROGETTO DEFINITIVO -

1182	Acciaio	3013	27293015	14550000	53030000
1190	Acciaio	3095	22480058	11140000	62360000
1191	Acciaio	3113	22482381	11160000	62360000
1202	Acciaio	3111	17077838	7435000	68500000
P1	CLS	138000	2637289337	1840000000	1368787500
P2	CLS	65000	592288047	338541667	366166667
P3	CLS	10000	14083333	8333333,33	8333333,33
R	Rigido				

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- Progetto Definitivo -

C.5 CARATTERISTICHE DELLA SOLLECITAZIONE

Nel seguito, si riportano i diagrammi riferiti alle caratteristiche della sollecitazione significative per la struttura.

I diagrammi sono organizzati così da rappresentare l'andamento delle sollecitazioni agenti sia sull'impalcato sia sull'unica pila intermedia. Questi sono indicati con il titolo

- o Impalcato
- o Pila

I diagrammi presentano gli inviluppi delle caratteristiche di sollecitazione riferiti alle diverse combinazioni di carico di progetto, utili alle successive verifiche sia allo stato limite ultimo sia allo stato limite di esercizio.

Le unità di misura utilizzate sono:

[kN m] per i momenti flettenti (M_{22} e M_{33}) e torcenti (M_T);

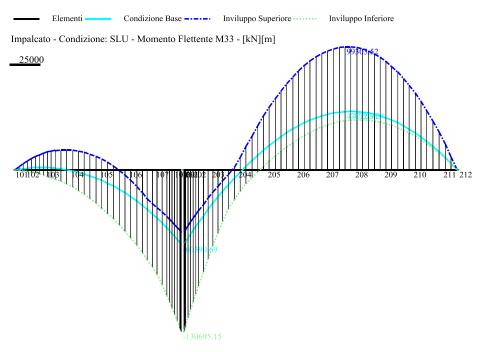
[kN] per lo sforzo normale (N) e gli sforzi di taglio (T_{33} e T_{22}).

Per quanto concerne le sollecitazioni associate alle combinazioni di carico, esse si riferiscono a:

per l'IMPALCATO

- Stato Limite Ultimo (SLU) combinazione fondamentale di progetto;
- Combinazione Sismica (SLV) combinazione sismica per la verifica degli Stati Limite Ultimi;

per la PILA

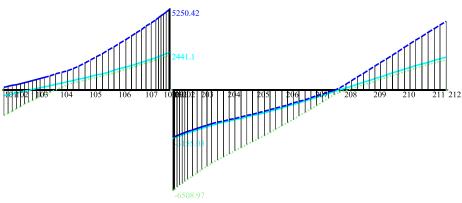

- Stato Limite Ultimo (SLU) combinazione fondamentale di progetto;
- Stato Limite di Esercizio Rara (SLE) combinazione caratteristica;
- Stato Limite di Esercizio Frequente (SLE) combinazione frequente;
- Stato Limite di Esercizio Quasi Permanente (SLE) combinazione quasi permanente;
- Combinazione Sismica (SLV) combinazione sismica per la verifica degli Stati Limite Ultimi;

- PROGETTO DEFINITIVO -

Stato Limite Ultimo

 $\label{eq:mpalcato} \mbox{ - Condizione: SLU - Momento Flettente M33 - [kN][m]}$

101 i 0 0 7 0 101 j -6.3324 -6.3324 47 -8.5487 102 i -6.3324 -6.3324 59 -8.5487 102 j 1969.8548 11051.3478 18 -2640.7969	46 18 6 47 47 47 47
102 i -6.3324 -6.3324 59 -8.5487 102 j 1969.8548 11051.3478 18 -2640.7969	6 47 47 47 47 7
102 j 1969.8548 11051.3478 18 -2640.7969	47 47 47 47 47
	47 47 47 47
	47 47 7
103 i 1967.9048 11031.6126 18 -2642.7473	47 7
103 j 1524.2408 15774.4758 18 -7400.4713	7
104 i 1519.0177 15756.4835 18 -7405.6948	
104 j -3248.1983 14204.5417 58 -19780.8702	
105 i -3243.0331 14189.6233 58 -19773.8978	7
105 j -13060.6891 3167.5297 58 -39498.8234	7
106 i -13048.2038 3180.0193 58 -39481.9688	7
106 j -28675.5398 -18603.1223 58 -67049.9624	7
107 i -28654.8946 -18562.3847 58 -67022.092	7
107 j -46892.9246 -37774.5731 72 -101482.0265	3
108 i -46869.1702 -37750.8247 72 -101427.4513	3
108 j -58583.6685 -48699.9911 72 -126805.1522	3
109 i -58580.7065 -48697.0322 72 -126796.8125	3
109 j -60390.6939 -50397.6865 72 -130695.1517	3
1 i 0 0 1 0	1
1 j 0 0 1 0	1
201 i -60390.6824 -50397.6754 72 -130695.1236	3
201 j -58045.2644 -48118.8484 72 -125852.8997	3
202 i -58045.2709 -48118.8544 72 -125852.9216	3
202 j -42586.8769 -33126.5974 72 -93873.9562	3
203 i -42588.8746 -33128.5912 72 -93880.8776	3
203 j -17261.9846 -8689.5812 72 -41390.6321	3
204 i -17282.6492 -8710.2385 72 -41448.018	3
204 j 7414.4188 27453.1093 19 -6255.859	46
205 i 7462.6615 27473.5183 19 -6207.621	46
205 j 26828.8495 63891.5989 19 15098.7654	46
206 i 26815.1721 63844.9398 19 15085.0835	46
206 j 40189.5201 87984.7164 19 30399.6299	46
207 i 40176.8026 87954.2573 19 30386.9079	46
207 j 46683.0706 98792.2139 19 38833.3743	46
208 i 46674.4333 98782.1668 19 38824.7323	46
208 j 45985.3813 95859.0334 19 40075.8787	46



- PROGETTO DEFINITIVO -

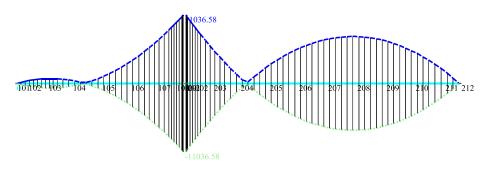
209	i	45981.9039	95870.2081	19	40072.3968	46
209	j	38078.4519	78967.7707	19	34109.1432	46
210	i	38092.0144	79016.8534	19	34122.7013	46
210	j	22960.4824	47747.284	19	20931.3677	46
211	i	22970.4451	47806.4111	19	20941.3256	46
211	j	-32.3432	-32.3339	78	-109.2302	15
212	i	-7.9308	-7.9308	47	-10.7066	18
212	i	0	0	7	0	58

Elementi — Condizione Base — Inviluppo Superiore — Inviluppo Inferiore

Impalcato - Condizione: SLU - Taglio T2 - [kN]

Impalcato - Condizione: SLU - Taglio T2 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0	19	0	46
101	j	21.108	28.4958	19	21.108	46
102	i	-380.844	158.4135	47	-1662.8004	18
102	j	-81.422	457.8355	47	-924.3099	18
103	i	-81.422	457.8355	47	-924.3099	18
103	j	192.338	798.9138	7	-328.7242	58
104	i	192.338	798.9138	7	-328.7242	58
104	j	602.198	1352.2248	7	456.4205	72
105	i	602.198	1352.2248	7	456.4205	72
105	j	1034.078	2326.8951	3	888.3005	72
106	i	1034.078	2326.8951	3	888.3005	72
106	j	1570.478	3468.6711	3	1424.7005	72
107	i	1570.478	3468.6711	3	1424.7005	72
107	j	2077.128	4522.5486	3	1931.3505	72
108	i	2077.128	4522.5486	3	1931.3505	72
108	j	2385.538	5145.147	3	2239.7605	72
109	i	2385.538	5145.147	3	2239.7605	72
109	j	2441.095	5250.4241	3	2295.3175	72
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	-3155.025	-3066.237	72	-6508.9661	3
201	j	-3099.423	-3010.635	72	-6403.631	3
202	i	-3099.423	-3010.635	72	-6403.631	3
202	j	-2789.489	-2700.701	72	-5778.8321	3
203	i	-2789.489	-2700.701	72	-5778.8321	3
203	j	-2275.889	-2187.101	72	-4719.2171	3
204	i	-2275.889	-2187.101	72	-4719.2171	3
204	j	-1840.289	-1751.501	72	-3735.2291	3
205	i	-1840.289	-1751.501	72	-3735.2291	3
205	j	-1387.409	-1298.621	72	-2764.3631	3
206	i	-1387.409	-1298.621	72	-2764.3631	3
206	j	-841.649	-752.861	72	-1688.8451	3
207	i	-841.649	-752.861	72	-1688.8451	3
207	j	-242.729	-153.941	72	-547.3931	3
208	i	-242.729	-153.941	72	-547.3931	3
208	j	357.571	819.626	19	195.8878	46
209	i	357.571	819.626	19	195.8878	46



- PROGETTO DEFINITIVO -

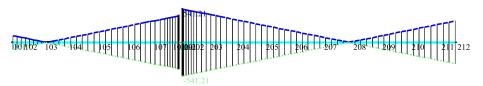
209	j	959.671	1997.447	19	797.9878	46
210	i	959.671	1997.447	19	797.9878	46
210	j	1562.251	3214.148	19	1400.5678	46
211	i	1562.251	3214.148	19	1400.5678	46
211	j	2103.532	4421.8107	19	1941.8488	46
212	i	-26.436	-26.436	74	-35.6886	3
212	j	0	0	74	0	3

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Impalcato - Condizione: SLU - Momento Flettente M22 - [kN][m]

Impalcato - Condizione: SLU - Momento Flettente M22 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0	11	0	4
101	j	0	1.4175	26	-1.4175	28
102	i	0	1.4175	26	-1.4175	28
102	j	0	642.141	28	-642.141	26
103	i	0	642.1431	28	-642.1431	26
103	j	0	722.9751	28	-722.9751	26
104	i	0	722.9802	28	-722.9802	26
104	j	0	119.3161	5	-119.3161	10
105	i	0	119.3105	5	-119.3105	10
105	j	0	2058.5163	26	-2058.5163	28
106	i	0	2058.5088	26	-2058.5088	28
106	j	0	5150.2608	26	-5150.2608	28
107	i	0	5150.2532	26	-5150.2532	28
107	j	0	8592.9632	26	-8592.9632	28
108	i	0	8592.957	26	-8592.957	28
108	j	0	10715.6239		-10715.6239	28
109	i	0	10715.6225		-10715.6225	28
109	j	0	11036.5793		-11036.5793	28
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	0	11036.5791		-11036.5791	28
201	j	0	10632.8847		-10632.8847	28
202	i	0	10632.8847		-10632.8847	28
202	j	0	7931.0549	26	-7931.0549	28
203	i	0	7931.0549	26	-7931.0549	28
203	j	0	3385.1849	26	-3385.1849	28
204	i	0	3385.1811	26	-3385.1811	28
204	j	0	1030.3629	28	-1030.3629	26
205	i	0	1030.3674	28	-1030.3674	26
205	j	0	4311.9114	28	-4311.9114	26
206	i	0	4311.9158	28	-4311.9158	26
206	j	0	6459.4598	28	-6459.4598	26
207	i	0	6459.4643	28	-6459.4643	26
207	į	0	7473.0083	28	-7473.0083	26
208	i	0	7473.0128	28	-7473.0128	26
208	j	0	7352.5568	28	-7352.5568	26
209	i	0	7352.5613	28	-7352.5613	26
209	j	0	6098.1053	28	-6098.1053	26
210	i	0	6098.1098	28	-6098.1098	26
210	j	0	3709.6538	28	-3709.6538	26



- PROGETTO DEFINITIVO -

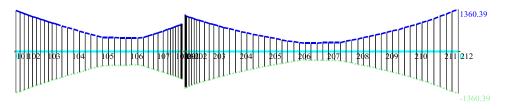
211	i	0	3709.6583	28	-3709.6583	26
211	j	0	1.4175	26	-1.4175	28
212	i	0	1.4175	26	-1.4175	28
212	j	0	0	4	0	11

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Impalcato - Condizione: SLU - Taglio T3 - [kN]

Impalcato - Condizione: SLU - Taglio T3 - [kN]

101 i 0 0 1 0 1 101 j 0 4.725 28 -4.725 26 102 i 0 108.936 26 -108.936 28 102 j 0 41.604 26 -41.604 28 103 i 0 41.604 26 -41.604 28 103 j 0 21.396 28 -21.396 26 104 i 0 21.396 28 -21.396 26 104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 j 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 304.896 28 -304.896 26 107 j	ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101 j 0 4.725 28 -4.725 26 102 i 0 108.936 26 -108.936 28 102 j 0 41.604 26 -41.604 28 103 i 0 41.604 26 -41.604 28 103 j 0 21.396 28 -21.396 26 104 i 0 21.396 28 -21.396 26 104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26	1.01	i	0	0	1	0	1
102 i 0 108.936 26 -108.936 28 102 j 0 41.604 26 -41.604 28 103 i 0 41.604 26 -41.604 28 103 j 0 21.396 28 -21.396 26 104 i 0 21.396 28 -21.396 26 104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 j 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108				4.725			
102 j 0 41.604 26 -41.604 28 103 i 0 41.604 26 -41.604 28 103 j 0 21.396 28 -21.396 26 104 i 0 21.396 28 -21.396 26 104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
103 i 0 41.604 26 -41.604 28 103 j 0 21.396 28 -21.396 26 104 i 0 21.396 28 -21.396 26 104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
103 j 0 21.396 28 -21.396 26 104 i 0 21.396 28 -21.396 26 104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
104 i 0 21.396 28 -21.396 26 104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
104 j 0 115.896 28 -115.896 26 105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26			0				
105 i 0 115.896 28 -115.896 26 105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
105 j 0 210.396 28 -210.396 26 106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
106 i 0 210.396 28 -210.396 26 106 j 0 304.896 28 -304.896 26 107 i 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
106 j 0 304.896 28 -304.896 26 107 i 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
107 i 0 304.896 28 -304.896 26 107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
107 j 0 383.646 28 -383.646 26 108 i 0 383.646 28 -383.646 26							
108 i 0 383.646 28 -383.646 26							
			0				
	108	j	0	424.989	28	-424.989	26
109 i 0 424.989 28 -424.989 26							
109 j 0 430.896 28 -430.896 26							
1 i 0 0 1 0 1							
1 j 0 0 1 0 1	1	i	0	0	1		1
201 i 0 541.212 26 -541.212 28				541.212		-541.212	
201 j 0 535.3065 26 -535.3065 28			0				
202 i 0 535.3065 26 -535.3065 28							
202 j 0 493.962 26 -493.962 28							
203 i 0 493.962 26 -493.962 28			0				
203 j 0 415.212 26 -415.212 28	203	i	0	415.212	26	-415.212	28
204 i 0 415.212 26 -415.212 28							
204 j 0 320.712 26 -320.712 28	204	i	0	320.712	26	-320.712	28
205 i 0 320.712 26 -320.712 28	205		0	320.712	26	-320.712	28
205 j 0 226.212 26 -226.212 28	205	i	0	226.212	26	-226.212	28
206 i 0 226.212 26 -226.212 28	206		0			-226.212	28
206 j 0 131.712 26 -131.712 28	206	j	0	131.712	26	-131.712	28
207 i 0 131.712 26 -131.712 28	207		0	131.712	26	-131.712	28
207 j 0 37.212 26 -37.212 28	207	j	0	37.212	26	-37.212	28
208 i 0 37.212 26 -37.212 28	208		0	37.212	26	-37.212	28
208 j 0 57.288 28 -57.288 26	208	j	0	57.288	28	-57.288	26
209 i 0 57.288 28 -57.288 26	209		0	57.288	28	-57.288	26
209 j 0 151.788 28 -151.788 26	209	j	0	151.788	28	-151.788	26
210 i 0 151.788 28 -151.788 26	210		0	151.788	28	-151.788	26
210 j 0 246.288 28 -246.288 26	210	j	0	246.288	28	-246.288	26
211 i 0 246.288 28 -246.288 26	211		0	246.288	28	-246.288	26
211 j 0 345.1185 28 -345.1185 26		j	0	345.1185	28	-345.1185	26
212 i 0 4.725 26 -4.725 28	212		0	4.725	26		28
212 j 0 0 28 0 26	212	j	0	0	28	0	26



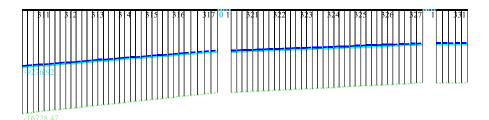
- PROGETTO DEFINITIVO -

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

 $Impalcato\ \hbox{--} Condizione\hbox{:}\ SLU\ \hbox{--}\ Momento\ Torcente}\ Mt\ \hbox{--}\ [kN][m]$

Impalcato - C	Condizione:	SLU -	Momento	Torcente	Μt	-	[kN][m]
---------------	-------------	-------	---------	----------	----	---	---------

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0	1	0	1
101	j	0	0.945	28	-0.945	26
102	i	0	1326.6297	4	-1326.6297	11
102	j	0	1085.2287	4	-1085.2287	11
103	i	0	1085.2287	4	-1085.2287	11
103	j	0	884.0722	4	-884.0722	11
104	i	0	884.0722	4	-884.0722	11
104	j	0	610.0395	4	-610.0395	11
105	i	0	610.0395	4	-610.0395	11
105	j	0	450.441	26	-450.441	28
106	i	0	450.441	26	-450.441	28
106	j	0	462.5042	5	-462.5042	10
107	i	0	462.5042	5	-462.5042	10
107	j	0	715.5428	5	-715.5428	10
108	i	0	715.5428	5	-715.5428	10
108	j	0	864.2087	5	-864.2087	10
109	i	0	864.2087	5	-864.2087	10
109	j	0	886.2053	5	-886.2053	10
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	0	1166.5317	10	-1166.5317	5
201	j	0	1144.6865	10	-1144.6865	5
202	i	0	1144.6865	10	-1144.6865	5
202	j	0	1002.9825	10	-1002.9825	5
203	i	0	1002.9825	10	-1002.9825	5
203	j	0	776.0583	10	-776.0583	5
204	i	0	776.0583	10	-776.0583	5
204	j	0	559.291	10	-559.291	5
205	i	0	559.291	10	-559.291	5
205	j	0	379.0725	10	-379.0725	5
206	i	0	379.0725	10	-379.0725	5
206	j	0	272.9424	28	-272.9424	26
207	i	0	272.9424	28	-272.9424	26
207	j	0	293.3872	11	-293.3872	4
208	i	0	293.3872	11	-293.3872	4
208	j	0	489.0087	11	-489.0087	4
209	i	0	489.0087	11	-489.0087	4
209	j	0	714.5953	11	-714.5953	4
210	i	0	714.5953	11	-714.5953	4
210	j	0	990.8976	11	-990.8976	4
211	i	0	990.8976	11	-990.8976	4
211	j	0	1360.3932	11	-1360.3932	4
212	i	0	0.945	26	-0.945	28
212	j	0	0	1	0	1



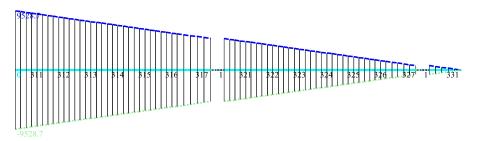
- PROGETTO DEFINITIVO -

Elementi — Condizione Base — Inviluppo Superiore — Inviluppo Inferiore

Pila - Condizione: SLU - Sforzo Normale N - [kN]

Pila - Condizione: SLU - Sforzo Normale N - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Mi
311	i	-9276.92	-9042.356	72	-16728.4692	3
311	j	-8931.92	-8697.356	72	-16262.7192	3
312	i	-8931.92	-8697.356	72	-16262.7192	3
312	j	-8586.92	-8352.356	72	-15796.9692	3
313	i	-8586.92	-8352.356	72	-15796.9692	3
313	j	-8241.92	-8007.356	72	-15331.2192	3 3 3 3 3 3 3 3 3
314	i	-8241.92	-8007.356	72	-15331.2192	3
314	j	-7896.92	-7662.356	72	-14865.4692	3
315	i	-7896.92	-7662.356	72	-14865.4692	3
315	j	-7551.92	-7317.356	72	-14399.7192	3
316	i	-7551.92	-7317.356	72	-14399.7192	3
316	j	-7206.92	-6972.356	72	-13933.9692	3
317	i	-7206.92	-6972.356	72	-13933.9692	3
317	j	-6779.12	-6544.556	72	-13356.4392	3
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	-6779.12	-6544.556	72	-13356.4392	3
321	j	-6616.62	-6382.056	72	-13137.0642	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
322	i	-6616.62	-6382.056	72	-13137.0642	3
322	j	-6454.12	-6219.556	72	-12917.6892	3
323	i	-6454.12	-6219.556	72	-12917.6892	3
323	j	-6291.62	-6057.056	72	-12698.3142	3
324	i	-6291.62	-6057.056	72	-12698.3142	3
324	j	-6129.12	-5894.556	72	-12478.9392	3
325	i	-6129.12	-5894.556	72	-12478.9392	3
325	j	-5966.62	-5732.056	72	-12259.5642	3
326	i	-5966.62	-5732.056	72	-12259.5642	3
326	j	-5804.12	-5569.556	72	-12040.1892	3
327	i	-5804.12	-5569.556	72	-12040.1892	3
327	j	-5625.37	-5390.806	72	-11798.8767	3
1	i	0	0	1	0	1
1	j	0	0	1	0	1 3
331	i	-5625.37	-5390.806	72	-11798.8767	3
331	i	-5596.12	-5361.556	72	-11759.3892	3



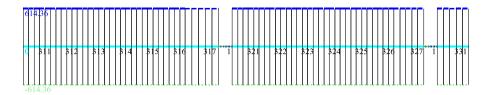
- PROGETTO DEFINITIVO -

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLU - Momento Flettente M33 - [kN][m]

Pila - Condizione: SLU - Momento Flettente M33 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	9528.7031	34	-9528.7031	80
311	j	0	8914.3438	34	-8914.3438	80
312	í	0	8914.3444	34	-8914.3444	80
312	j	0	8299.9851	34	-8299.9851	80
313	í	0	8299.9858	34	-8299.9858	80
313	j	0	7685.6264	34	-7685.6264	80
314	í	0	7685.6271	34	-7685.6271	80
314	j	0	7071.2677	34	-7071.2677	80
315	í	0	7071.2684	34	-7071.2684	80
315	j	0	6456.9091	34	-6456.9091	80
316	i	0	6456.9097	34	-6456.9097	80
316	j	0	5842.5504	34	-5842.5504	80
317	i	0	5842.5511	34	-5842.5511	80
317	j	0	5080.7455	34	-5080.7455	80
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	0	5080.7462	34	-5080.7462	80
321	j	0	4466.3868	34	-4466.3868	80
322	i	0	4466.3875	34	-4466.3875	80
322	j	0	3852.0282	34	-3852.0282	80
323	i	0	3852.0288	34	-3852.0288	80
323	j	0	3237.6695	34	-3237.6695	80
324	i	0	3237.6702	34	-3237.6702	80
324	j	0	2623.3108	34	-2623.3108	80
325	i	0	2623.3115	34	-2623.3115	80
325	j	0	2008.9521	34	-2008.9521	80
326	i	0	2008.9528	34	-2008.9528	80
326	j	0	1394.5935	34	-1394.5935	80
327	i	0	1394.5941	34	-1394.5941	80
327	j	0	718.7989	34	-718.7989	80
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	718.7997	34	-718.7997	80
331	j	0	0.0008	38	-0.0008	76



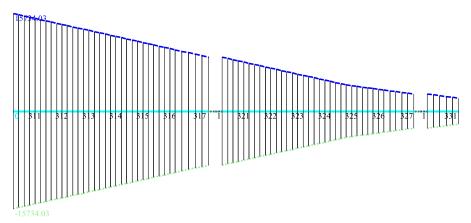
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLU - Sforzo di Taglio T2 - [kN]

Pila - Condizione: SLU - Sforzo di Taglio T2 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	614.3594	34	-614.3593	80
311	j	0	614.3594	34	-614.3593	80
312	í	0	614.3594	34	-614.3593	80
312	j	0	614.3594	34	-614.3593	80
313	i	0	614.3594	34	-614.3593	80
313	j	0	614.3594	34	-614.3593	80
314	i	0	614.3594	34	-614.3593	80
314	j	0	614.3594	34	-614.3593	80
315	i	0	614.3594	34	-614.3593	80
315	j	0	614.3594	34	-614.3593	80
316	i	0	614.3594	34	-614.3593	80
316	j	0	614.3594	34	-614.3593	80
317	i	0	614.3594	34	-614.3593	80
317	j	0	614.3594	34	-614.3593	80
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	0	614.3594	34	-614.3593	80
321	j	0	614.3594	34	-614.3593	80
322	i	0	614.3594	34	-614.3593	80
322	j	0	614.3594	34	-614.3593	80
323	i	0	614.3594	34	-614.3593	80
323	j	0	614.3594	34	-614.3593	80
324	i	0	614.3594	34	-614.3593	80
324	j	0	614.3594	34	-614.3593	80
325	i	0	614.3594	34	-614.3593	80
325	j	0	614.3594	34	-614.3593	80
326	i	0	614.3594	34	-614.3593	80
326	j	0	614.3594	34	-614.3593	80
327	i	0	614.3594	34	-614.3593	80
327	j	0	614.3594	34	-614.3593	80
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	614.3594	34	-614.3593	80
331	j	0	614.3594	34	-614.3593	80



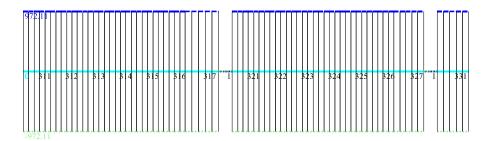
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLU - Momento Flettente M22 - [kN][m]

Pila - Condizione: SLU - Momento Flettente M22 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	15734.0267	28	-15734.0267	26
311	j	0	14761.9187	28	-14761.9187	26
312	i	0	14761.919	28	-14761.919	26
312	j	0	13789.811	28	-13789.811	26
313	i	0	13789.8113	28	-13789.8113	26
313	j	0	12817.7033	28	-12817.7033	26
314	i	0	12817.7034	28	-12817.7034	26
314	j	0	11845.5954	28	-11845.5954	26
315	i	0	11845.5957	28	-11845.5957	26
315		0	10873.4877	28	-10873.4877	26
316	i	0	10873.488	28	-10873.488	26
316	j i j	0	9901.38	28	-9901.38	26
317	i	0	9901.3802	28	-9901.3802	26
317	j i	0	8695.9662	28	-8695.9662	26
1		0	0	1	0	1
1	j i	0	0	1	0	1
321	i	0	8695.9667	28	-8695.9667	26
321	j	0	7723.8587	28	-7723.8587	26
322	i	0	7723.8588	28	-7723.8588	26
322	j	0	6751.7508	28	-6751.7508	26
323	i	0	6751.7511	28	-6751.7511	26
323	j	0	5779.6431	28	-5779.6431	26
324	i	0	5779.6434	28	-5779.6434	26
324	j	0	4807.5354	28	-4807.5354	26
325	i	0	4807.5357	28	-4807.5357	26
325	j	0	3980.4387	11	-3980.4387	4
326	i	0	3980.4388	11	-3980.4388	4
326	j	0	3400.491	11	-3400.491	4
327	i	0	3400.4912	11	-3400.4912	4
327	j i	0	2762.5485	11	-2762.5485	4
1		0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	2762.5484	11	-2762.5484	4
331	j	0	2084.0094	11	-2084.0094	4



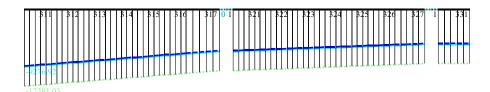
- PROGETTO DEFINITIVO -

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLU - Sforzo di Taglio T3 - [kN]

Pila - Condizione: SLU - Sforzo di Taglio T3 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	972.108	28	-972.108	26
311	j	0	972.108	28	-972.108	26
312	i	0	972.108	28	-972.108	26
312	j	0	972.108	28	-972.108	26
313	i	0	972.108	28	-972.108	26
313	j	0	972.108	28	-972.108	26
314	i	0	972.108	28	-972.108	26
314	j	0	972.108	28	-972.108	26
315	i	0	972.108	28	-972.108	26
315	j	0	972.108	28	-972.108	26
316	i	0	972.108	28	-972.108	26
316	j	0	972.108	28	-972.108	26
317	i	0	972.108	28	-972.108	26
317	j	0	972.108	28	-972.108	26
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	0	972.108	28	-972.108	26
321	j	0	972.108	28	-972.108	26
322	i	0	972.108	28	-972.108	26
322	j	0	972.108	28	-972.108	26
323	i	0	972.108	28	-972.108	26
323	j	0	972.108	28	-972.108	26
324	i	0	972.108	28	-972.108	26
324	j	0	972.108	28	-972.108	26
325	i	0	972.108	28	-972.108	26
325	j	0	972.108	28	-972.108	26
326	i	0	972.108	28	-972.108	26
326	j	0	972.108	28	-972.108	26
327	i	0	972.108	28	-972.108	26
327	j	0	972.108	28	-972.108	26
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	972.108	28	-972.108	26
331	j	0	972.108	28	-972.108	26


- PROGETTO DEFINITIVO -

Stato Limite di Esercizio Rara (SLE)

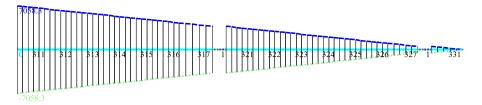
Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Rara - Sforzo Normale N - [kN]

5000

Pila - Condizione: SLE Rara - Sforzo Normale N - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Mi
311	i	-9276.92	-9120.544	32	-12381.0336	3
311	j	-8931.92	-8775.544	32	-12036.0336	3
312	i	-8931.92	-8775.544	32	-12036.0336	3
312	j	-8586.92	-8430.544	32	-11691.0336	3 3
313	i	-8586.92	-8430.544	32	-11691.0336	3
313	j	-8241.92	-8085.544	32	-11346.0336	3 3 3 3 3
314	i	-8241.92	-8085.544	32	-11346.0336	3
314	j	-7896.92	-7740.544	32	-11001.0336	3
315	i	-7896.92	-7740.544	32	-11001.0336	3
315	j	-7551.92	-7395.544	32	-10656.0336	3
316	i	-7551.92	-7395.544	32	-10656.0336	3
316	j	-7206.92	-7050.544	32	-10311.0336	3
317	i	-7206.92	-7050.544	32	-10311.0336	
317	j	-6779.12	-6622.744	32	-9883.2336	3
1	i	0	0	1	0	1
1	j i	0	0	1	0	1
321	i	-6779.12	-6622.744	32	-9883.2336	3 3
321	j	-6616.62	-6460.244	32	-9720.7336	3
322	i	-6616.62	-6460.244	32	-9720.7336	3 3
322	j	-6454.12	-6297.744	32	-9558.2336	3
323	i	-6454.12	-6297.744	32	-9558.2336	3
323	j	-6291.62	-6135.244	32	-9395.7336	3 3 3
324	i	-6291.62	-6135.244	32	-9395.7336	3
324	j	-6129.12	-5972.744	32	-9233.2336	3 3
325	i	-6129.12	-5972.744	32	-9233.2336	3
325	j	-5966.62	-5810.244	32	-9070.7336	3
326	i	-5966.62	-5810.244	32	-9070.7336	3
326	j	-5804.12	-5647.744	32	-8908.2336	3
327	i	-5804.12	-5647.744	32	-8908.2336	3
327	j	-5625.37	-5468.994	32	-8729.4836	3
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	-5625.37	-5468.994	32	-8729.4836	3
331	j	-5596.12	-5439.744	32	-8700.2336	3



- PROGETTO DEFINITIVO -

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Rara - Momento Flettente M33 - [kN][m]

Pila - Condizione: SLE Rara - Momento Flettente M33 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	7058.2986	34	-7058.2986	40
311	j	0	6603.2176	34	-6603.2176	40
312	i	0	6603.2181	34	-6603.2181	40
312	j	0	6148.1371	34	-6148.1371	40
313	i	0	6148.1376	34	-6148.1376	40
313	j	0	5693.0566	34	-5693.0566	40
314	i	0	5693.0571	34	-5693.0571	40
314	j	0	5237.9761	34	-5237.9761	40
315	i	0	5237.9766	34	-5237.9766	40
315	j	0	4782.8956	34	-4782.8956	40
316	í	0	4782.8961	34	-4782.8961	40
316	j	0	4327.8151	34	-4327.8151	40
317	i	0	4327.8156	34	-4327.8156	40
317	j	0	3763.5152	34	-3763.5152	40
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	í	0	3763.5157	34	-3763.5157	40
321	j	0	3308.4347	34	-3308.4347	40
322	i	0	3308.4352	34	-3308.4352	40
322	j	0	2853.3542	34	-2853.3542	40
323	i	0	2853.3547	34	-2853.3547	40
323	j	0	2398.2737	34	-2398.2737	40
324	i	0	2398.2742	34	-2398.2742	40
324	j	0	1943.1932	34	-1943.1932	40
325	í	0	1943.1937	34	-1943.1937	40
325	j	0	1488.1127	34	-1488.1127	40
326	í	0	1488.1132	34	-1488.1132	40
326	j	0	1033.0322	34	-1033.0322	40
327	i	0	1033.0327	34	-1033.0327	40
327	j	0	532.4436	34	-532.4436	40
1	í	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	532.4442	34	-532.4442	40
331	j	0	0.0006	38	-0.0006	36

- PROGETTO DEFINITIVO -

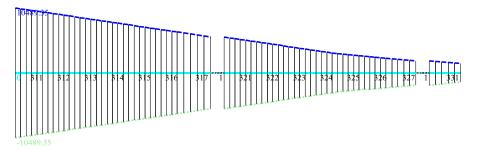
Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Rara - Sforzo di Taglio T2 - [kN]

500

Pila - Condizione: SLE Rara - Sforzo di Taglio T2 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	455.081	34	-455.081	40
311	j	0	455.081	34	-455.081	40
312	i	0	455.081	34	-455.081	40
312	j	0	455.081	34	-455.081	40
313	i	0	455.081	34	-455.081	40
313	j	0	455.081	34	-455.081	40
314	i	0	455.081	34	-455.081	40
314	j	0	455.081	34	-455.081	40
315	i	0	455.081	34	-455.081	40
315	j	0	455.081	34	-455.081	40
316	i	0	455.081	34	-455.081	40
316	j	0	455.081	34	-455.081	40
317	i	0	455.081	34	-455.081	40
317	j i	0	455.081	34	-455.081	40
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	0	455.081	34	-455.081	40
321	j	0	455.081	34	-455.081	40
322	i	0	455.081	34	-455.081	40
322	j	0	455.081	34	-455.081	40
323	i	0	455.081	34	-455.081	40
323	j	0	455.081	34	-455.081	40
324	i	0	455.081	34	-455.081	40
324	j	0	455.081	34	-455.081	40
325	i	0	455.081	34	-455.081	40
325	j	0	455.081	34	-455.081	40
326	i	0	455.081	34	-455.081	40
326	j	0	455.081	34	-455.081	40
327	i	0	455.081	34	-455.081	40
327	j	0	455.081	34	-455.081	40
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	455.081	34	-455.081	40
331	j	0	455.081	34	-455.081	40



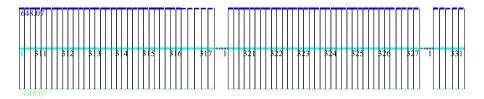
- PROGETTO DEFINITIVO -

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Rara - Momento Flettente M22 - [kN][m]

Pila - Condizione: SLE Rara - Momento Flettente M22 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	10489.3511	28	-10489.3511	26
311	j	0	9841.2791	28	-9841.2791	26
312	i	0	9841.2793	28	-9841.2793	26
312	j	0	9193.2073	28	-9193.2073	26
313	i	0	9193.2075	28	-9193.2075	26
313	j	0	8545.1355	28	-8545.1355	26
314	i	0	8545.1356	28	-8545.1356	26
314	j	0	7897.0636	28	-7897.0636	26
315	i	0	7897.0638	28	-7897.0638	26
315	j	0	7248.9918	28	-7248.9918	26
316	i	0	7248.992	28	-7248.992	26
316	j	0	6600.92	28	-6600.92	26
317	i	0	6600.9201	28	-6600.9201	26
317	j	0	5797.3108	28	-5797.3108	26
1	j i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	0	5797.3111	28	-5797.3111	26
321	j	0	5149.2391	28	-5149.2391	26
322	i	0	5149.2392	28	-5149.2392	26
322	j	0	4501.1672	28	-4501.1672	26
323	i	0	4501.1674	28	-4501.1674	26
323	j	0	3853.0954	28	-3853.0954	26
324	i	0	3853.0956	28	-3853.0956	26
324	j	0	3205.0236	28	-3205.0236	26
325	i	0	3205.0238	28	-3205.0238	26
325	j	0	2778.0097	11	-2778.0097	4
326	i	0	2778.0097	11	-2778.0097	4
326	j	0	2391.6235	11	-2391.6235	4
327	i	0	2391.6237	11	-2391.6237	4
327	j	0	1966.5988	11	-1966.5988	4
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	1966.5988	11	-1966.5988	4
331	j	0	1514.5269	11	-1514.5269	4



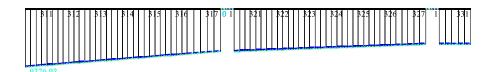
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Rara - Sforzo di Taglio T3 - [kN]

Pila - Condizione: SLE Rara - Sforzo di Taglio T3 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	648.072	28	-648.072	26
311	j	0	648.072	28	-648.072	26
312	i	0	648.072	28	-648.072	26
312	j	0	648.072	28	-648.072	26
313	i	0	648.072	28	-648.072	26
313	j	0	648.072	28	-648.072	26
314	i	0	648.072	28	-648.072	26
314	j	0	648.072	28	-648.072	26
315	i	0	648.072	28	-648.072	26
315	j	0	648.072	28	-648.072	26
316	i	0	648.072	28	-648.072	26
316	j	0	648.072	28	-648.072	26
317	i	0	648.072	28	-648.072	26
317	j	0	648.072	28	-648.072	26
1	i	0	0	1	0	1
1	j i	0	0	1	0	1
321		0	648.072	28	-648.072	26
321	j	0	648.072	28	-648.072	26
322	i	0	648.072	28	-648.072	26
322	j	0	648.072	28	-648.072	26
323	i	0	648.072	28	-648.072	26
323	j	0	648.072	28	-648.072	26
324	i	0	648.072	28	-648.072	26
324	j	0	648.072	28	-648.072	26
325	i	0	648.072	28	-648.072	26
325	j	0	648.072	28	-648.072	26
326	i	0	648.072	28	-648.072	26
326	j	0	648.072	28	-648.072	26
327	i	0	648.072	28	-648.072	26
327	j	0	648.072	28	-648.072	26
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	648.072	28	-648.072	26
331	j	0	648.072	28	-648.072	26



- PROGETTO DEFINITIVO -

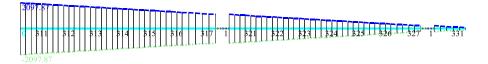
Stato Limite di Esercizio Frequente (SLE)

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Frequente - Sforzo Normale N - [kN]

Pila - Condizione: SLE Frequente - Sforzo Normale N - [kN]

311 i -9276.92 -9183.0944 7 -9370.7456 6 311 j -8931.92 -8838.0944 7 -9025.7456 6 312 i -8931.92 -8838.0944 7 -9025.7456 6 312 j -8586.92 -8493.0944 7 -8680.7456 6 313 i -8586.92 -8493.0944 7 -8680.7456 6 313 j -8241.92 -8148.0944 7 -8335.7456 6 314 i -8241.92 -8148.0944 7 -8335.7456 6 314 j -7896.92 -7803.0944 7 -7990.7456 6 315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	n
312 i -8931.92 -8838.0944 7 -9025.7456 6 312 j -8586.92 -8493.0944 7 -8680.7456 6 313 i -8586.92 -8493.0944 7 -8680.7456 6 313 j -8241.92 -8148.0944 7 -8335.7456 6 314 i -8241.92 -8148.0944 7 -8335.7456 6 314 j -7896.92 -7803.0944 7 -7990.7456 6 315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
312 j -8586.92 -8493.0944 7 -8680.7456 6 313 i -8586.92 -8493.0944 7 -8680.7456 6 313 j -8241.92 -8148.0944 7 -8335.7456 6 314 i -8241.92 -8148.0944 7 -8335.7456 6 314 j -7896.92 -7803.0944 7 -7990.7456 6 315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
313 i -8586.92 -8493.0944 7 -8680.7456 6 313 j -8241.92 -8148.0944 7 -8335.7456 6 314 i -8241.92 -8148.0944 7 -8335.7456 6 314 j -7896.92 -7803.0944 7 -7990.7456 6 315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
313 j -8241.92 -8148.0944 7 -8335.7456 6 314 i -8241.92 -8148.0944 7 -8335.7456 6 314 j -7896.92 -7803.0944 7 -7990.7456 6 315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
314 i -8241.92 -8148.0944 7 -8335.7456 6 314 j -7896.92 -7803.0944 7 -7990.7456 6 315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
314 j -7896.92 -7803.0944 7 -7990.7456 6 315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
315 i -7896.92 -7803.0944 7 -7990.7456 6 315 j -7551.92 -7458.0944 7 -7645.7456 6	
316 i -7551.92 -7458.0944 7 -7645.7456 6	
316 j -7206.92 -7113.0944 7 -7300.7456 6	
317 i -7206.92 -7113.0944 7 -7300.7456 6	
317 j -6779.12 -6685.2944 7 -6872.9456 6	
1 i 0 0 1 0 1	
1 j 0 0 1 0 1	
321 i -6779.12 -6685.2944 7 -6872.9456 6	
321 j -6616.62 -6522.7944 7 -6710.4456 6	
322 i -6616.62 -6522.7944 7 -6710.4456 6	
322 j -6454.12 -6360.2944 7 -6547.9456 6	
323 i -6454.12 -6360.2944 7 -6547.9456 6	
323 j -6291.62 -6197.7944 7 -6385.4456 6	
324 i -6291.62 -6197.7944 7 -6385.4456 6	
324 j -6129.12 -6035.2944 7 -6222.9456 6	
325 i -6129.12 -6035.2944 7 -6222.9456 6	
325 j -5966.62 -5872.7944 7 -6060.4456 6	
326 i -5966.62 -5872.7944 7 -6060.4456 6	
326 j -5804.12 -5710.2944 7 -5897.9456 6	
327 i -5804.12 -5710.2944 7 -5897.9456 6	
327 j -5625.37 -5531.5444 7 -5719.1956 6	
1 i 0 0 1 0 1	
1 j 0 0 1 0 1	
331 i -5625.37 -5531.5444 7 -5719.1956 6	
331 j -5596.12 -5502.2944 7 -5689.9456 6	



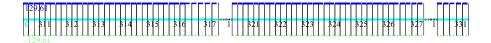
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Frequente - Momento Flettente M22 - [kN][m]

Pila - Condizione: SLE Frequente - Momento Flettente M22 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Mir
311	i	0	2097.8702	4	-2097.8702	2
311	j	0	1968.2558	4	-1968.2558	2
312	i	0	1968.2559	4	-1968.2559	2
312	j	0	1838.6415	4	-1838.6415	2
313	i	0	1838.6415	4	-1838.6415	2
313	j	0	1709.0271	4	-1709.0271	2
314	i	0	1709.0271	4	-1709.0271	2
314	j	0	1579.4127	4	-1579.4127	2
315	i	0	1579.4128	4	-1579.4128	2
315	j	0	1449.7984	4	-1449.7984	2
316	i	0	1449.7984	4	-1449.7984	2
316	j	0	1320.184	4	-1320.184	2
317	i	0	1320.184	4	-1320.184	2
317	j	0	1159.4622	4	-1159.4622	2
1	i	0	0	1	0	1
1	j i	0	0	1	0	1
321	i	0	1159.4622	4	-1159.4622	2
321	j	0	1029.8478	4	-1029.8478	2
322	i	0	1029.8478	4	-1029.8478	2
322	j	0	900.2334	4	-900.2334	2
323	i	0	900.2335	4	-900.2335	2
323	j	0	770.6191	4	-770.6191	2
324	i	0	770.6191	4	-770.6191	2
324	j	0	641.0047	4	-641.0047	2
325	i	0	641.0048	4	-641.0048	2
325	j	0	511.3904	4	-511.3904	2
326	i	0	511.3904	4	-511.3904	2
326	j	0	381.776	4	-381.776	2
327	i	0	381.776	4	-381.776	2
327	j	0	239.2002	4	-239.2002	2
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	239.2002	4	-239.2002	2
331	j	0	87.5514	4	-87.5514	2



- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Frequente - Sforzo di Taglio T3 - [kN]

Pila - Condizione: SLE Frequente - Sforzo di Taglio T3 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	129.6144	4	-129.6144	2
311	j	0	129.6144	4	-129.6144	2
312	i	0	129.6144	4	-129.6144	2
312	j	0	129.6144	4	-129.6144	2
313	i	0	129.6144	4	-129.6144	2
313	j	0	129.6144	4	-129.6144	2
314	í	0	129.6144	4	-129.6144	2
314	j	0	129.6144	4	-129.6144	2
315	i	0	129.6144	4	-129.6144	2
315	j	0	129.6144	4	-129.6144	2
316	i	0	129.6144	4	-129.6144	2
316	j	0	129.6144	4	-129.6144	2
317	i	0	129.6144	4	-129.6144	2
317	j	0	129.6144	4	-129.6144	2
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	0	129.6144	4	-129.6144	2
321	j	0	129.6144	4	-129.6144	2
322	i	0	129.6144	4	-129.6144	2
322	j	0	129.6144	4	-129.6144	2
323	i	0	129.6144	4	-129.6144	2
323	j	0	129.6144	4	-129.6144	2
324	i	0	129.6144	4	-129.6144	2
324	j	0	129.6144	4	-129.6144	2
325	i	0	129.6144	4	-129.6144	2
325	j	0	129.6144	4	-129.6144	2
326	i	0	129.6144	4	-129.6144	2
326	j	0	129.6144	4	-129.6144	2
327	i	0	129.6144	4	-129.6144	2
327	j	0	129.6144	4	-129.6144	2
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	129.6144	4	-129.6144	2
331	j	0	129.6144	4	-129.6144	2


- PROGETTO DEFINITIVO -

Stato Limite di Esercizio Quasi Permanente (SLE)

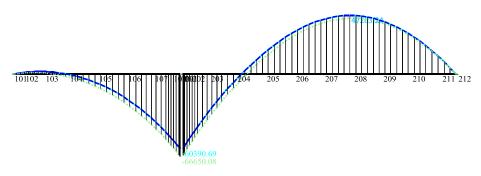
Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: SLE Quasi Permanente - Sforzo Normale N - [kN]

5000

Pila - Condizione: SLE Quasi Permanente - Sforzo Normale N - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Mi
311	i	-9276.92	-9198.732	3	-9355.108	2
311	j	-8931.92	-8853.732	3	-9010.108	2
312	i	-8931.92	-8853.732	3	-9010.108	2
312	j	-8586.92	-8508.732	3	-8665.108	2
313	i	-8586.92	-8508.732	3	-8665.108	2
313	j	-8241.92	-8163.732	3	-8320.108	2
314	i	-8241.92	-8163.732	3	-8320.108	2
314	j	-7896.92	-7818.732	3	-7975.108	2
315	i	-7896.92	-7818.732	3	-7975.108	2
315	j	-7551.92	-7473.732	3	-7630.108	2
316	i	-7551.92	-7473.732	3	-7630.108	2
316	j	-7206.92	-7128.732	3	-7285.108	2
317	i	-7206.92	-7128.732	3	-7285.108	2
317	j	-6779.12	-6700.932	3	-6857.308	2
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	-6779.12	-6700.932	3	-6857.308	2
321	j	-6616.62	-6538.432	3	-6694.808	2
322	i	-6616.62	-6538.432	3	-6694.808	2
322	j	-6454.12	-6375.932	3	-6532.308	2
323	i	-6454.12	-6375.932	3	-6532.308	2
323	j	-6291.62	-6213.432	3	-6369.808	2
324	i	-6291.62	-6213.432	3	-6369.808	2
324	j	-6129.12	-6050.932	3	-6207.308	2
325	i	-6129.12	-6050.932	3	-6207.308	2
325	j	-5966.62	-5888.432	3	-6044.808	2
326	i	-5966.62	-5888.432	3	-6044.808	2
326	j	-5804.12	-5725.932	3	-5882.308	2
327	i	-5804.12	-5725.932	3	-5882.308	2
327	j	-5625.37	-5547.182	3	-5703.558	2
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	-5625.37	-5547.182	3	-5703.558	2
331	j	-5596.12	-5517.932	3	-5674.308	2


- PROGETTO DEFINITIVO -

Combinazione Sismica (SLV)

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Impalcato - Condizione: Sisma SLV - Momento Flettente M33 - [kN][m]

25000

Impalcato - Condizione: Sisma SLV - Momento Flettente M33 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0	3	0	6
101	j	-6.3324	-6.3018	18	-6.363	24
102	i	-6.3324	-6.3021	18	-6.3627	24
102	j	1969.8548	1969.8548	1	1196.89	2
103	i	1967.9048	1967.9048	1	1194.9423	2
103	j	1524.2408	1524.2408	1	31.3471	2
104	i	1519.0177	1519.0177	1	26.1279	2
104	j	-3248.1983	-3248.1983	1	-5823.6327	3
105	i	-3243.0331	-3243.0331	1	-5818.4645	3
105	j	-13060.6891	-13060.6891	1	-16730.7485	3
106	i	-13048.2038	-13048.2038	1	-16718.2594	3
106	j	-28675.5398	-28675.5398	1	-33448.5646	3
107	i	-28654.8946	-28654.8946	1	-33427.9134	3
107	j	-46892.9246	-46892.9246	1	-52592.5844	3
108	i	-46869.1702	-46869.1702	1	-52568.8279	3
108	j	-58583.6685	-58583.6685	1	-64772.9201	3
109	i	-58580.7065	-58580.7065		-64769.9558	3
109	j	-60390.6939	-60390.6939	1	-66650.0822	3
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	-60390.6824	-60390.6824	1	-65941.7249	7
201	j	-58045.2644	-58045.2644	1	-63556.5194	7
202	i	-58045.2709	-58045.2709		-63556.5259	7
202	j	-42586.8769	-42586.8769		-47821.0027	7
203	i	-42588.8746	-42588.8746	1	-47823.0003	7
203	j	-17261.9846	-17261.9846		-21974.2003	7
204	i	-17282.6492	-17282.6492		-21994.8644	7
204	j	7414.4188	7414.4188	1	3297.2531	6
205	i	7462.6615	7462.6615	1	3345.496	6
205	j	26828.8495	26828.8495	1	23266.6276	6
206	i	26815.1721	26815.1721	1	23252.9523	6
206	j	40189.5201	40189.5201		37190.8731	6
207	i	40176.8026	40176.8026	1	37178.1565	6
207	j	46683.0706	46683.0706	1	44257.8829	6
208	i	46674.4333	46674.4333		44249.2445	6
208	j	45985.3813	45985.3813		44144.0009	6
209	i	45981.9039	45981.9039	1	44140.5233	6
209	j	38078.4519	38078.4519		36831.2333	6
210	i	38092.0144	38092.0144		36844.7966	6
210	j	22960.4824	22960.4824	1	22317.8558	6
211	i	22970.4451	22970.4451	1	22327.8193	6
211	j	-32.3432	-32.3009	18	-32.3794	24

- PROGETTO DEFINITIVO -

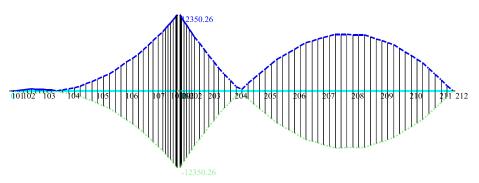
212	i	-7.9308	-7.8928	18	-7.9688	24
212	j	0	0.0002	18	-0.0002	24

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Impalcato - Condizione: Sisma SLV - Taglio T2 - [kN]

 $\label{thm:model} \mbox{Impalcato - Condizione: Sisma SLV - Taglio T2 - [kN]}$

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0.051	22	-0.051	20
101	j	21.108	21.159	22	21.057	20
102	i	-380.844	-290.4377	2	-380.844	1
102	j	-81.422	8.9843	2	-81.422	1
103	i	-81.422	8.7056	3	-81.422	1
103	j	192.338	282.4656	3	192.338	1
104	i	192.338	282.9519	3	192.338	1
104	j	602.198	692.8119	3	602.198	1
105	i	602.198	693.417	3	602.198	1
105	j	1034.078	1125.297	3	1034.078	1
106	i	1034.078	1125.9921	3	1034.078	1
106	i	1570.478	1662.3921	3	1570.478	1
107	i	1570.478	1663.1421	3	1570.478	1
107	j	2077.128	2169.7921	3	2077.128	1
108	i	2077.128	2170.384	3	2077.128	1
108	j	2385.538	2478.794	3	2385.538	1
109	i	2385.538	2479.0568	3	2385.538	1
109	j	2441.095	2534.6138	3	2441.095	1
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	-3155.025	-3155.025	1	-3208.0749	7
201	j	-3099.423	-3099.423	1	-3152.4729	7
202	i	-3099.423	-3099.423	1	-3152.2095	7
202	j	-2789.489	-2789.489	1	-2842.2755	7
203	í	-2789.489	-2789.489	1	-2841.68	7
203	j	-2275.889	-2275.889	1	-2328.08	7
204	í	-2275.889	-2275.889	1	-2327.4068	7
204	j	-1840.289	-1840.289	1	-1891.8068	7
205	i	-1840.289	-1840.289	1	-1891.1597	7
205	j	-1387.409	-1387.409	1	-1438.2797	7
206	i	-1387.409	-1387.409	1	-1437.5606	7
206	j	-841.649	-841.649	1	-891.8006	7
207	i	-841.649	-841.649	1	-890.9768	7
207	j	-242.729	-242.729	1	-292.0568	7
208	i	-242.729	-242.729	1	-291.3797	6
208	j	357.571	357.571	1	308.9203	6
209	i	357.571	357.571	1	308.0575	6
209	j	959.671	959.671	1	910.1575	6
210	i	959.671	959.671	1	909.2884	6
210	j	1562.251	1562.251	1	1511.8684	6
211	i	1562.251	1562.251	1	1511.0449	6
211	j	2103.532	2103.532	1	2052.3259	6
212	i	-26.436	-26.373	18	-26.499	22
212	j	0	0.063	18	-0.063	22



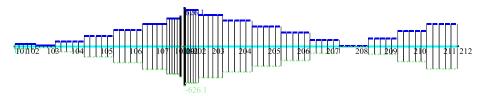
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Impalcato - Condizione: Sisma~SLV - Momento~Flettente~M22 - [kN][m]

 ${\tt Impalcato - Condizione: Sisma SLV - Momento Flettente M22 - [kN][m]}$

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0	14	0	10
101	j	0	1.2606	14	-1.2606	10
102	i	0	1.2606	14	-1.2606	10
102	j	0	351.35	10	-351.35	14
103	i	0	351.346	10	-351.346	14
103	j	0	221.434	10	-221.434	14
104	i	0	221.433	10	-221.433	14
104	j	0	781.395	14	-781.395	10
105	i	0	781.3932	14	-781.3932	10
105	j	0	2789.5332	14	-2789.5332	10
105	i	0	2789.5378	14	-2789.5378	10
106	j	0	5952.2938	14	-5952.2938	10
107	i	0	5952.2918	14	-5952.2918	10
107	j			14	-9626.7618	
	i	0	9626.7618			10
108		0	9626.7654	14	-9626.7654	10
108	j	0	11985.9474		-11985.9474	10
109	i	0	11985.948		-11985.948	10
109	j	0	12350.2635		-12350.2635	10
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	0	12350.2636		-12350.2636	10
201	j	0	11880.6871		-11880.6871	10
202	i	0	11880.6872		-11880.6872	10
202	j	0	8785.198	14	-8785.198	10
203	i	0	8785.1987	14	-8785.1987	10
203	j	0	3713.5387	14	-3713.5387	10
204	i	0	3713.5423	14	-3713.5423	10
204	j	0	1253.9417	10	-1253.9417	14
205	i	0	1253.9462	10	-1253.9462	14
205	j	0	5146.0022	10	-5146.0022	14
206	i	0	5146.0063	10	-5146.0063	14
206	j	0	7843.4023	10	-7843.4023	14
207	i	0	7843.4075	10	-7843.4075	14
207	j	0	9172.3355	10	-9172.3355	14
208	i	0	9172.3337	10	-9172.3337	14
208	j	0	9068.0777	10	-9068.0777	14
209	i	0	9068.0781	10	-9068.0781	14
209	j	0	7530.0981	10	-7530.0981	14
210	i	0	7530.0948	10	-7530.0948	14
210	j	0	4548.0588	10	-4548.0588	14
211	i	0	4548.0642	10	-4548.0642	14
211	j	0	1.5744	14	-1.5744	10
212	i	0	1.5789	14	-1.5789	10
212	j	0	0.0003	14	-0.0003	10
	-					



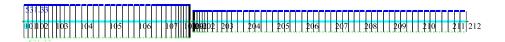
- PROGETTO DEFINITIVO -

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Impalcato - Condizione: Sisma SLV - Taglio T3 - [kN]

Impalcato - Condizione: Sisma SLV - Taglio T3 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	2.101	10	-2.101	14
101	j	0	2.101	10	-2.101	14
102	i	0	41.241	14	-41.241	10
102	j	0	41.241	14	-41.241	10
103	i	0	16.239	10	-16.239	14
103	j	0	16.239	10	-16.239	14
104	i	0	83.569	10	-83.569	14
104	j	0	83.569	10	-83.569	14
105	i	0	167.345	10	-167.345	14
105	j	0	167.345	10	-167.345	14
106	i	0	263.563	10	-263.563	14
106	j	0	263.563	10	-263.563	14
107	i	0	367.447	10	-367.447	14
107	j	0	367.447	10	-367.447	14
108	i	0	449.368	10	-449.368	14
108	j	0	449.368	10	-449.368	14
109	i	0	485.754	10	-485.754	14
109	j	0	485.754	10	-485.754	14
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	0	626.102	14	-626.102	10
201	j	0	626.102	14	-626.102	10
202	i	0	589.617	14	-589.617	10
202	j	0	589.617	14	-589.617	10
203	i	0	507.166	14	-507.166	10
203	j	0	507.166	14	-507.166	10
204	i	0	413.957	14	-413.957	10
204	j	0	413.957	14	-413.957	10
205	i	0	324.338	14	-324.338	10
205	j	0	324.338	14	-324.338	10
206	i	0	224.783	14	-224.783	10
206	j	0	224.783	14	-224.783	10
207	i	0	110.744	14	-110.744	10
207	j	0	110.744	14	-110.744	10
208	i	0	8.688	10	-8.688	14
208	j	0	8.688	10	-8.688	14
209	i	0	128.165	10	-128.165	14
209	j	0	128.165	10	-128.165	14
210	i	0	248.503	10	-248.503	14
210	j	0	248.503	10	-248.503	14
211	i	0	362.521	10	-362.521	14
211	j	0	362.521	10	-362.521	14
212	i	0	2.631	14	-2.631	10
212	j	0	2.631	14	-2.631	10



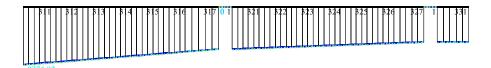
- PROGETTO DEFINITIVO -

Elementi — Condizione Base — Inviluppo Superiore Inviluppo Inferiore

 $Impalcato - Condizione: Sisma \ SLV - Momento \ Torcente \ Mt - [kN][m]$

Impalcato -	-	Condizione:	Sisma	SLV	-	${\tt Momento}$	Torcente	Μt	-	[kN][m]
-------------	---	-------------	-------	-----	---	-----------------	----------	----	---	---------

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0	1	0	1
101	j	0	0	1	0	1
102	i	0	531.3293	14	-531.3293	10
102	j	0	531.3293	14	-531.3293	10
103	i	0	531.3293	14	-531.3293	10
103	j	0	531.3293	14	-531.3293	10
104	í	0	531.3293	14	-531.3293	10
104	j	0	531.3293	14	-531.3293	10
105	i	0	531.3293	14	-531.3293	10
105	j	0	531.3293	14	-531.3293	10
106	i	0	531.3293	14	-531.3293	10
106	j	0	531.3293	14	-531.3293	10
107	i	0	531.3293	14	-531.3293	10
107	j	0	531.3293	14	-531.3293	10
108	i	0	531.3293	14	-531.3293	10
108	j	0	531.3293	14	-531.3293	10
109	i	0	531.3293	14	-531.3293	10
109	j	0	531.3293	14	-531.3293	10
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	0	336.7452	10	-336.7452	14
201	j	0	336.7452	10	-336.7452	14
202	i	0	336.7452	10	-336.7452	14
202	j	0	336.7452	10	-336.7452	14
203	i	0	336.7452	10	-336.7452	14
203	j	0	336.7452	10	-336.7452	14
204	i	0	336.7452	10	-336.7452	14
204	j	0	336.7452	10	-336.7452	14
205	i	0	336.7452	10	-336.7452	14
205	j	0	336.7452	10	-336.7452	14
206	i	0	336.7452	10	-336.7452	14
206	į	0	336.7452	10	-336.7452	14
207	i	0	336.7452	10	-336.7452	14
207	j	0	336.7452	10	-336.7452	14
208	i	0	336.7452	10	-336.7452	14
208	į	0	336.7452	10	-336.7452	14
209	i	0	336.7452	10	-336.7452	14
209	į	0	336.7452	10	-336.7452	14
210	i	0	336.7452	10	-336.7452	14
210	į	0	336.7452	10	-336.7452	14
211	i	0	336.7452	10	-336.7452	14
211	j	0	336.7452	10	-336.7452	14
212	i	0	0	1	0	1 1
212	j	0	0	1	0	Τ



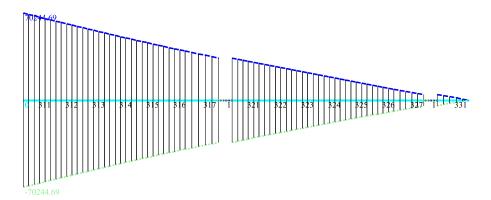
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: Sisma SLV - Sforzo Normale N - [kN]

Pila - Condizione: Sisma SLV - Sforzo Normale N - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	-9276.92	-9276.92	1	-9405.4465	22
311	j	-8931.92	-8931.92	1	-9060.4465	22
312	i	-8931.92	-8931.92	1	-9058.7935	22
312	j	-8586.92	-8586.92	1	-8713.7935	22
313	i	-8586.92	-8586.92	1	-8712.1395	22
313	j	-8241.92	-8241.92	1	-8367.1395	22
314	i	-8241.92	-8241.92	1	-8365.4865	22
314	j	-7896.92	-7896.92	1	-8020.4865	22
315	i	-7896.92	-7896.92	1	-8018.8325	22
315	j	-7551.92	-7551.92	1	-7673.8325	22
316	i	-7551.92	-7551.92	1	-7672.1795	22
316	j	-7206.92	-7206.92	1	-7327.1795	22
317	i	-7206.92	-7206.92	1	-7325.3275	22
317	j	-6779.12	-6779.12	1	-6897.5275	22
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	-6779.12	-6779.12	1	-6896.1135	22
321	j	-6616.62	-6616.62	1	-6733.6135	22
322	i	-6616.62	-6616.62	1	-6732.8345	22
322	j	-6454.12	-6454.12	1	-6570.3345	22
323	i	-6454.12	-6454.12	1	-6569.5555	22
323	j	-6291.62	-6291.62	1	-6407.0555	22
324	i	-6291.62	-6291.62	1	-6406.2765	22
324	j	-6129.12	-6129.12	1	-6243.7765	22
325	i	-6129.12	-6129.12	1	-6242.9975	22
325	j	-5966.62	-5966.62	1	-6080.4975	22
326	i	-5966.62	-5966.62	1	-6079.7185	22
326	j	-5804.12	-5804.12	1	-5917.2185	22
327	i	-5804.12	-5804.12	1	-5916.4015	22
327	j	-5625.37	-5625.37	1	-5737.6515	22
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	-5625.37	-5625.37	1	-5737.1525	22
331	j	-5596.12	-5596.12	1	-5707.9025	22



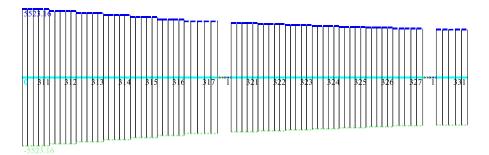
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: Sisma SLV - Momento Flettente M33 - [kN][m]

Pila - Condizione: Sisma SLV - Momento Flettente M33 - [kN][m]

311 i 0 70244.686 3 -70244.686 6 311 j 0 64721.529 3 -64721.529 6 312 i 0 64721.5291 3 -64721.5291 6 312 j 0 59362.1251 3 -59362.1251 6 313 i 0 59362.1256 3 -59362.1256 6 313 j 0 54166.4756 3 -54166.4756 6 314 i 0 54166.4754 3 -54166.4754 6 314 j 0 49134.5784 3 -49134.5784 6 315 j 0 44266.4345 3 -44266.4345 6 316 i 0 44266.4345 3 -44266.4345 6 316 j 0 39562.0449 3 -39562.0449 6 317 j 0 39562.0447 3 -39562.0449 6 317 j 0 39562.0447 3 -39562.0449 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 0 1 0 1 221 i 0 33956.0208 3 -33956.0208 6 1 i 0 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.363 6 323 j 0 21044.7287 3 -22571.3627 6 324 i 0 29575.127 3 -22571.3627 6 325 j 0 16895.2247 3 -12822.8509 6 326 i 0 12822.8509 3 -12822.8509 6 327 i 0 8827.6082 3 -8827.6082 6 327 j 0 4521.9251 3 -4521.9251 6 327 j 0 4521.9251 3 -4521.9251 6 331 i 0 4521.9253 3 -4521.9253 6 331 j 0 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6 331 j 0 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6 331 j 0 0 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6 331 j 0 0 0.0005 2 -0.0005	ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Mir
312 i 0 64721.5291 3 -64721.5291 6 312 j 0 59362.1256 3 -59362.1256 6 313 i 0 59362.1256 3 -59362.1256 6 313 j 0 54166.4756 3 -54166.4756 6 314 i 0 54166.4754 3 -54166.4754 6 314 j 0 49134.5784 3 -49134.5784 6 315 i 0 49134.5785 3 -49134.5785 6 315 j 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4345 3 -44266.4345 6 316 j 0 39562.0449 3 -39562.0449 6 317 j 0 39562.0447 3 -33956.0208 6 1 i 0 0 1 0 1 321 j 0 33956.0208 3 -33956.0208 6 <td>311</td> <td></td> <td>0</td> <td>70244.686</td> <td></td> <td>-70244.686</td> <td>6</td>	311		0	70244.686		-70244.686	6
312 i 0 64721.5291 3 -64721.5291 6 312 j 0 59362.1256 3 -59362.1256 6 313 i 0 59362.1256 3 -59362.1256 6 313 j 0 54166.4756 3 -54166.4756 6 314 i 0 54166.4754 3 -54166.4754 6 314 j 0 49134.5784 3 -49134.5784 6 315 i 0 49134.5785 3 -49134.5785 6 315 j 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4345 3 -44266.4345 6 316 j 0 39562.0449 3 -39562.0449 6 317 j 0 39562.0447 3 -33956.0208 6 1 i 0 0 1 0 1 321 j 0 33956.0208 3 -33956.0208 6 <td>311</td> <td>j</td> <td>0</td> <td>64721.529</td> <td>3</td> <td>-64721.529</td> <td>6</td>	311	j	0	64721.529	3	-64721.529	6
313 i 0 59362.1256 3 -59362.1256 6 313 j 0 54166.4756 3 -54166.4754 6 314 i 0 54166.4754 3 -54166.4754 6 314 j 0 49134.5784 3 -49134.5785 6 315 i 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4349 3 -44266.4345 6 316 i 0 44266.4349 3 -44266.4349 6 317 i 0 39562.0447 3 -39562.0447 6 317 j 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 j 0 1 0 1 321 j 0 33956.0213 3 -33956.0213 6	312	i	0	64721.5291		-64721.5291	6
313 i 0 59362.1256 3 -59362.1256 6 313 j 0 54166.4756 3 -54166.4754 6 314 i 0 54166.4754 3 -54166.4754 6 314 j 0 49134.5784 3 -49134.5785 6 315 i 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4349 3 -44266.4345 6 316 i 0 44266.4349 3 -44266.4349 6 317 i 0 39562.0447 3 -39562.0447 6 317 j 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 j 0 1 0 1 321 j 0 33956.0213 3 -33956.0213 6	312	j	0	59362.1251	3	-59362.1251	6
313 j 0 54166.4756 3 -54166.4754 6 314 i 0 54166.4754 3 -54166.4754 6 314 j 0 49134.5784 3 -49134.5784 6 315 i 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4345 3 -44266.4349 6 316 i 0 44266.4349 3 -44266.4349 6 316 j 0 39562.0447 3 -39562.0449 6 317 j 0 39562.0447 3 -39562.0447 6 317 j 0 39562.0447 3 -39562.0447 6 317 j 0 39562.0447 3 -39562.0447 6 317 j 0 339560.0208 3 -339560.0208 6 1 i 0 0 1 0 1 322 j 0 295755.1273 3 -295755.1273 6	313	i	0	59362.1256	3	-59362.1256	6
314 i 0 54166.4754 3 -54166.4754 6 314 j 0 49134.5784 3 -49134.5784 6 315 i 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4345 3 -44266.4345 6 316 i 0 44266.4349 3 -39562.0449 6 316 j 0 39562.0447 3 -39562.0447 6 317 j 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 1 0 1 321 j 0 0 1 0 1 321 j 0 29575.1273 3 -29575.1273 6 322 j 0 29575.1273 3 -29575.1273 6 322 j 0 25271.363 3 -25271.363 6	313	j	0	54166.4756		-54166.4756	6
315 i 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4345 3 -44266.4345 6 316 i 0 44266.4349 3 -44266.4349 6 316 j 0 39562.0449 3 -39562.0447 6 317 i 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 1 0 1 321 i 0 39552.043 3 -33956.0213 6 321 j 0 33956.0213 3 -33956.0213 6 321 j 0 29575.1273 3 -29575.1273 6 322 i 0 29575.127 3 -29575.1273 6 322 j 0 25271.363 3 -29575.127 6 323 j 0 25271.363 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 i 0 29575.127 3 -25271.3627 6 324 j 0 16895.2247 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 j 0 16895.2249 3 -16895.2247 6 325 j 0 12822.8509 3 -12822.8509 6 326 j 0 8827.6082 3 -8827.6082 6 327 j 0 8827.6082 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	314	i	0	54166.4754		-54166.4754	6
315 i 0 49134.5785 3 -49134.5785 6 315 j 0 44266.4345 3 -44266.4345 6 316 i 0 44266.4349 3 -44266.4349 6 316 j 0 39562.0449 3 -39562.0447 6 317 i 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 1 0 1 321 i 0 39552.043 3 -33956.0213 6 321 j 0 33956.0213 3 -33956.0213 6 321 j 0 29575.1273 3 -29575.1273 6 322 i 0 29575.127 3 -29575.1273 6 322 j 0 25271.363 3 -29575.127 6 323 j 0 25271.363 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 i 0 29575.127 3 -25271.3627 6 324 j 0 16895.2247 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 j 0 16895.2249 3 -16895.2247 6 325 j 0 12822.8509 3 -12822.8509 6 326 j 0 8827.6082 3 -8827.6082 6 327 j 0 8827.6082 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	314	j	0	49134.5784		-49134.5784	6
316 i 0 44266.4349 3 -44266.4349 6 316 j 0 39562.0449 3 -39562.0449 6 317 i 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 1 0 1 1 j 0 0 1 321 i 0 33956.0213 3 -33956.0213 6 321 j 0 29575.1273 3 -29575.1273 6 322 j 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.363 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 j 0 16895.2247 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 j 0 12822.8512 3 -12822.8519 6 326 j 0 8827.6082 3 -8827.6082 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	315	i	0	49134.5785		-49134.5785	6
316 i 0 44266.4349 3 -44266.4349 6 316 j 0 39562.0449 3 -39562.0449 6 317 i 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 1 0 1 1 j 0 0 1 321 i 0 33956.0213 3 -33956.0213 6 321 j 0 29575.1273 3 -29575.1273 6 322 j 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.363 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 j 0 16895.2247 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 j 0 12822.8512 3 -12822.8519 6 326 j 0 8827.6082 3 -8827.6082 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	315	j	0	44266.4345	3	-44266.4345	6
317 i 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 1 0 1 1 j 0 0 1 0 1 321 i 0 33956.0213 3 -33956.0213 6 321 j 0 29575.127 3 -29575.1273 6 322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.363 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6	316	i	0	44266.4349	3	-44266.4349	6
317 i 0 39562.0447 3 -39562.0447 6 317 j 0 33956.0208 3 -33956.0208 6 1 i 0 0 1 0 1 1 j 0 0 1 0 1 321 i 0 33956.0213 3 -33956.0213 6 321 j 0 29575.127 3 -29575.1273 6 322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.3627 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -21044.7287 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6	316	j	0	39562.0449		-39562.0449	6
1 i 0 0 1 0 1 1 j 0 0 1 0 1 321 i 0 33956.0213 3 -33956.0213 6 321 j 0 29575.1273 3 -29575.1273 6 322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.3627 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6	317	i	0	39562.0447		-39562.0447	6
1 i 0 0 1 0 1 1 j 0 0 1 0 1 321 i 0 33956.0213 3 -33956.0213 6 321 j 0 29575.1273 3 -29575.1273 6 322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.3627 3 -25271.363 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8512 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6	317	j	0	33956.0208	3	-33956.0208	6
321 j 0 29575.1273 3 -29575.1273 6 322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.3637 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -21044.7287 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 1 0 1 1 j 0 4521.9253 3 -4521.9253	1	i	0	0	1	0	1
321 j 0 29575.1273 3 -29575.1273 6 322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.3637 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -21044.7287 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 1 0 1 1 j 0 4521.9253 3 -4521.9253	1	j	0	0	1	0	1
322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.363 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6082 3 -8827.6082 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	321		0	33956.0213		-33956.0213	6
322 i 0 29575.127 3 -29575.127 6 322 j 0 25271.363 3 -25271.363 6 323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -25271.3627 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6082 3 -8827.6082 6 327 j 0 4521.9251 3 -4521.9251 6 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	321	j	0	29575.1273	3	-29575.1273	6
323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -21044.7287 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6082 3 -8827.6082 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 1 331 i 0 4521.9253 3 -4521.9253 6	322	i	0	29575.127	3	-29575.127	6
323 i 0 25271.3627 3 -25271.3627 6 323 j 0 21044.7287 3 -21044.7287 6 324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6082 3 -8827.6082 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 1 331 i 0 4521.9253 3 -4521.9253 6	322	j	0	25271.363	3	-25271.363	6
324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 0 1 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	323	i	0	25271.3627	3	-25271.3627	6
324 i 0 21044.7287 3 -21044.7287 6 324 j 0 16895.2247 3 -16895.2247 6 325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 0 1 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	323	j	0	21044.7287	3	-21044.7287	6
325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	324	i	0	21044.7287	3	-21044.7287	6
325 i 0 16895.2249 3 -16895.2249 6 325 j 0 12822.8509 3 -12822.8509 6 326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	324	j	0	16895.2247		-16895.2247	6
326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 1 j 0 0 1 331 i 0 4521.9253 3 -4521.9253 6	325	i	0	16895.2249	3	-16895.2249	6
326 i 0 12822.8512 3 -12822.8512 6 326 j 0 8827.6082 3 -8827.6082 6 327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 1 j 0 0 1 331 i 0 4521.9253 3 -4521.9253 6	325	j	0	12822.8509	3	-12822.8509	6
327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 0 1 1 j 0 0 1 331 i 0 4521.9253 3 -4521.9253 6	326	i	0	12822.8512	3	-12822.8512	6
327 i 0 8827.6078 3 -8827.6078 6 327 j 0 4521.9251 3 -4521.9251 6 1 i 0 0 1 0 1 1 j 0 0 1 331 i 0 4521.9253 3 -4521.9253 6	326	j	0	8827.6082	3	-8827.6082	6
1 i 0 0 1 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	327	i	0	8827.6078	3	-8827.6078	6
1 i 0 0 1 1 j 0 0 1 0 1 331 i 0 4521.9253 3 -4521.9253 6	327	j	0	4521.9251	3	-4521.9251	6
331 i 0 4521.9253 3 -4521.9253 6	1	i	0	0	1	0	1
331 i 0 4521.9253 3 -4521.9253 6	1	j	0	0	1	0	1
331 j 0 0.0005 2 -0.0005 7	331	i	0	4521.9253	3	-4521.9253	6
	331	j	0	0.0005	2	-0.0005	7



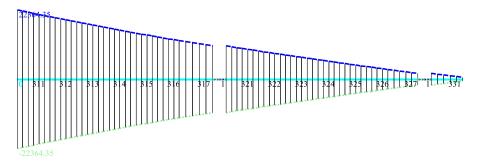
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: Sisma SLV - Sforzo di Taglio T2 - [kN]

Pila - Condizione: Sisma SLV - Sforzo di Taglio T2 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	5523.157	3	-5523.157	6
311	j	0	5523.157	3	-5523.157	6
312	i	0	5359.404	3	-5359.404	6
312	j	0	5359.404	3	-5359.404	6
313	i	0	5195.65	3	-5195.65	6
313	j	0	5195.65	3	-5195.65	6
314	i	0	5031.897	3	-5031.897	6
314	j	0	5031.897	3	-5031.897	6
315	i	0	4868.144	3	-4868.144	6
315	j	0	4868.144	3	-4868.144	6
316	i	0	4704.39	3	-4704.39	6
316	j	0	4704.39	3	-4704.39	6
317	i	0	4520.987	3	-4520.987	6
317	j	0	4520.987	3	-4520.987	6
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	i	0	4380.894	3	-4380.894	6
321	j	0	4380.894	3	-4380.894	6
322	i	0	4303.764	3	-4303.764	6
322	j	0	4303.764	3	-4303.764	6
323	i	0	4226.634	3	-4226.634	6
323	j	0	4226.634	3	-4226.634	6
324	i	0	4149.504	3	-4149.504	6
324	j	0	4149.504	3	-4149.504	6
325	i	0	4072.374	3	-4072.374	6
325	j	0	4072.374	3	-4072.374	6
326	i	0	3995.243	3	-3995.243	6
326	j	0	3995.243	3	-3995.243	6
327	i	0	3914.257	3	-3914.257	6
327	j	0	3914.257	3	-3914.257	6
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	3864.893	3	-3864.893	6
331	j	0	3864.893	3	-3864.893	6



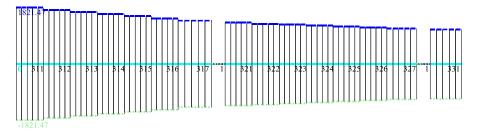
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: Sisma SLV - Momento Flettente M22 - [kN][m]

Pila - Condizione: Sisma SLV - Momento Flettente M22 - [kN][m]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	22364.3481	10	-22364.3481	14
311	j	0	20542.8771	10	-20542.8771	14
312	i	0	20542.8767	10	-20542.8767	14
312	j	0	18790.0877	10	-18790.0877	14
313	i	0	18790.0877	10	-18790.0877	14
313	j	0	17105.9807	10	-17105.9807	14
314	i	0	17105.9809	10	-17105.9809	14
314	j	0	15490.5569	10	-15490.5569	14
315	í	0	15490.5565	10	-15490.5565	14
315	j	0	13943.8145	10	-13943.8145	14
316	í	0	13943.8145	10	-13943.8145	14
316	j	0	12465.7545	10	-12465.7545	14
317	í	0	12465.7547	10	-12465.7547	14
317	j	0	10728.3461	10	-10728.3461	14
1	í	0	0	1	0	1
1	j	0	0	1	0	1
321	í	0	10728.3466	10	-10728.3466	14
321	j	0	9385.9696	10	-9385.9696	14
322	i	0	9385.9693	10	-9385.9693	14
322	j	0	8075.9423	10	-8075.9423	14
323	i	0	8075.9423	10	-8075.9423	14
323	j	0	6798.2653	10	-6798.2653	14
324	í	0	6798.2658	10	-6798.2658	14
324	j	0	5552.9398	10	-5552.9398	14
325	í	0	5552.9395	10	-5552.9395	14
325	j	0	4339.9635	10	-4339.9635	14
326	i	0	4339.9637	10	-4339.9637	14
326	j	0	3159.3387	10	-3159.3387	14
327	i	0	3159.3382	10	-3159.3382	14
327	j	0	1898.0144	10	-1898.0144	14
1	í	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	1898.0148	10	-1898.0148	14
331	j	0	580.6498	10	-580.6498	14



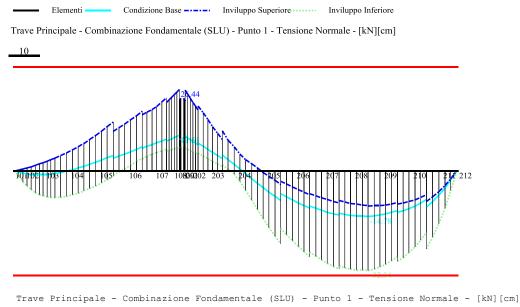
- PROGETTO DEFINITIVO -

Elementi Condizione Base Inviluppo Superiore Inviluppo Inferiore

Pila - Condizione: Sisma SLV - Sforzo di Taglio T3 - [kN]

Pila - Condizione: Sisma SLV - Sforzo di Taglio T3 - [kN]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
311	i	0	1821.471	10	-1821.471	14
311	j	0	1821.471	10	-1821.471	14
312	i	0	1752.789	10	-1752.789	14
312	j	0	1752.789	10	-1752.789	14
313	i	0	1684.107	10	-1684.107	14
313	j	0	1684.107	10	-1684.107	14
314	i	0	1615.424	10	-1615.424	14
314	j	0	1615.424	10	-1615.424	14
315	i	0	1546.742	10	-1546.742	14
315	j	0	1546.742	10	-1546.742	14
316	i	0	1478.06	10	-1478.06	14
316	j	0	1478.06	10	-1478.06	14
317	í	0	1401.136	10	-1401.136	14
317	j	0	1401.136	10	-1401.136	14
1	i	0	0	1	0	1
1	j	0	0	1	0	1
321	í	0	1342.377	10	-1342.377	14
321	j	0	1342.377	10	-1342.377	14
322	i	0	1310.027	10	-1310.027	14
322	j	0	1310.027	10	-1310.027	14
323	i	0	1277.677	10	-1277.677	14
323	j	0	1277.677	10	-1277.677	14
324	i	0	1245.326	10	-1245.326	14
324	j	0	1245.326	10	-1245.326	14
325	i	0	1212.976	10	-1212.976	14
325	j	0	1212.976	10	-1212.976	14
326	i	0	1180.625	10	-1180.625	14
326	j	0	1180.625	10	-1180.625	14
327	i	0	1146.658	10	-1146.658	14
327	j	0	1146.658	10	-1146.658	14
1	i	0	0	1	0	1
1	j	0	0	1	0	1
331	i	0	1125.953	10	-1125.953	14
331	i	0	1125.953	10	-1125.953	14


- PROGETTO DEFINITIVO -

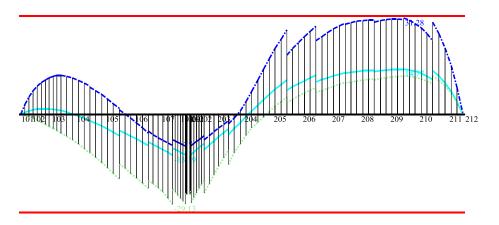
C.6 VERIFICHE ALLO STATO LIMITE ULTIMO DELL'IMPALCATO

C.6.1 VERIFICHE ALLO SLU PER AZIONI FLETTENTI

La struttura d'impalcato è caratterizzata da sezioni che, in via generale, rientrano nella classe di duttilità 4. La corrispondente verifica di sicurezza è stata eseguita limitando la massima tensione normale e verificando l'assenza di iterazione tra le azioni taglianti e torcenti con l'azione flettente. Il metodo riportato nell'EC3: EN 1993-1-5, "reduced stress method", è stato poi verificato in corrispondenza delle sezioni caratteristiche con le sezioni efficaci, come previsto dalle NTC 2008. In sede di verifica della progettazione esecutiva si potranno cambiare gli spessori delle lamiere e la tipologia dei diaframmi e degli irrigiditori, fermo restando il rispetto delle verifiche di sicurezza e funzionalità previste dalle norme vigenti.

Nei diagrammi che seguono, le linee rosse indicano i limiti di resistenza caratteristici, pari a 338 MPa per il punto 1, posto all'estradosso della struttura, e 319 MPa per il punto 2, posto all'intradosso della struttura.

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min	
101	i	0	0	1	0	1	
101	j	0.0044	0.007	40	0.0032	75	
102	i	0.0044	0.007	40	0.0032	75	
102	j	-1.2202	1.7899	53	-6.9998	18	
103	i	-1.2237	1.7973	53	-7.0136	18	
103	j	-0.8228	4.1863	53	-8.7065	18	


- PROGETTO DEFINITIVO -

104	i	-0.8156	4.168	53	-8.6519	18
104	j	1.4804	9.0416	7	-6.5001	64
105	i	1.4536	8.8876	7	-6.3847	64
105	j	5.0784	15.8364	7	-1.7096	64
106	i	4.0952	12.8015	7	-1.4082	64
106	j	7.8591	19.3344	7	4.1405	64
107	i	7.3657	18.1504	7	3.8491	64
107	j	10.3958	23.8382	3	6.949	69
108	i	9.7247	22.3242	3	6.4572	69
108	j	11.5086	26.4365	3	7.8003	69
109	i	10.1681	23.0443	3	7.4127	69
109	j	10.405	23.5768	3	7.6074	69
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	10.405	23.5768	3	7.6074	69
201	j	10.0112	22.7314	3	7.274	73
202	i	11.3254	26.235	3	7.3642	69
202	j	8.4362	19.7593	3	5.3728	69
203	i	9.016	21.0924	3	5.7843	69
203	j	3.978	10.1282	3	1.4127	73
204	i	5.1431	13.0031	3	1.9233	73
204	j	-2.4765	2.3207	52	-9.4008	19
205	i	-2.4926	2.3046	52	-9.4077	19
205	j	-9.5381	-4.3553	52	-23.7271	19
206	i	-7.4637	-3.3042	52	-18.6652	19
206	j	-12.0604	-7.734	52	-27.7917	19
207	i	-11.3993	-7.3156	52	-26.2612	19
207	j	-14.3223	-10.3588	52	-31.8645	19
208	i	-13.7356	-9.6332	52	-30.8624	19
208	j	-14.6912	-11.2687	52	-32.1592	19
209	i	-14.7762	-11.3426	52	-32.3424	19
209	j	-12.8444	-10.3079	52	-27.8345	19
210	i	-13.501	-10.6965	52	-29.4036	19
210	j	-9.2264	-7.6837	52	-19.9141	19
211	i	-11.7551	-9.8808	52	-25.3008	19
211	j	0.0194	0.0657	15	0.0185	79
212	i	0.0047	0.0073	36	0.0039	79
212	j	0	0	1	0	1

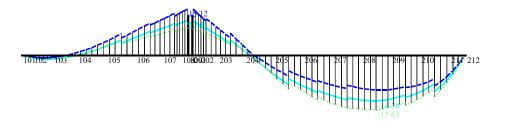
Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

Trave Principale - Combinazione Fondamentale (SLU) - Punto 2 - Tensione Normale - [kN][cm]

10

Trave Principale - Combinazione Fondamentale (SLU) - Punto 2 - Tensione Normale - [kN][cm]

ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min
101	i	0	0	1	0	1
101	j	-0.008	-0.0071	78	-0.0117	37
102	i	-0.008	-0.0071	80	-0.0117	35
102	j	1.8211	10.2845	24	-2.5093	47
103	i	1.82	10.2707	24	-2.5121	47
103	i	1.2253	12.7702	24	-6.0388	47



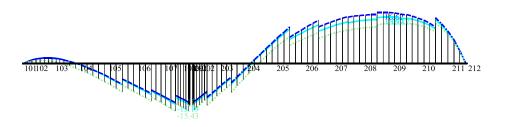
- PROGETTO DEFINITIVO -

104	i	1.2198	12.7426	24	-6.0368	47
104	j	-2.0781	9.1005	58	-12.6681	13
105	i	-2.0201	8.8509	58	-12.3294	13
105	j	-6.842	1.8964	58	-20.929	13
106	i	-5.2345	1.4791	58	-16.0423	13
106	j	-10.0507	-6.0704	58	-23.9508	13
107	i	-8.9037	-5.3345	58	-21.2585	13
107	j	-13.1924	-10.0469	72	-29.1302	9
108	i	-10.9542	-8.2692	72	-24.2593	9
108	j	-13.1496	-10.3053	72	-29.0884	9
109	i	-11.5404	-9.1686	72	-25.4038	9
109	j	-11.8292	-9.4408	72	-26.0313	9
1	i	0	0	1	0	1
1	j i	0	0	1	0	1
201	i	-11.8292	-9.4408	72	-26.0313	9
201	j	-11.3548	-8.9925	72	-25.0398	9
202	i	-12.9385	-10.1059	72	-28.673	9
202	j	-9.4248	-6.9599	72	-21.1462	9
203	i	-11.3496	-8.3021	72	-25.545	9
203	j	-4.653	-2.0583	72	-11.441	9
204	i	-6.6501	-3.0295	72	-16.2707	9
204	j	2.9724	11.1325	25	-2.6347	46
205	i	2.9917	11.1406	25	-2.6153	46
205	j	11.263	27.4295	25	5.7313	46
206	i	7.8772	19.2917	25	3.8949	46
206	j	12.6621	28.5924	25	8.7059	46
207	i	10.5736	23.9675	25	7.1771	46
207	j	13.5278	29.5994	25	10.2816	46
208	i	13.3472	29.2057	25	10.145	46
208	j	14.2374	30.5861	25	11.5002	46
209	i	13.9339	29.9591	25	11.2356	46
209	j	14.5494	30.8154	25	12.3901	46
210	i	14.765	31.2829	25	12.5717	46
210	j	11.3224	23.8887	25	9.9786	46
211	i	14.2377	30.0262	25	12.5856	46
211	j	-0.0285	-0.0278	74	-0.0964	21
212	i	-0.007	-0.0063	74	-0.0101	41
212	j	0	0	1	0	1
	-					

Elementi Condizione Base ---- Inviluppo Superiore Inviluppo Inferiore

 $Trave\ Principale\ -\ Combinazione\ Sismica\ (SLV)\ -\ Punto\ 1\ -\ Tensione\ Normale\ -\ [kN][cm]$

Trave	Princ	ipale - Com	nbinazione Sismi	ica (SLV) -	- Punto 1 - Te	ensione Normal	Le - [kN][cm]
ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min	
101	i	0	0.0016	8	-0.0016	3	
101	j	0.0044	0.0061	9	0.0026	2	
102	i	0.0044	0.0301	9	-0.0213	2	
102	j	-1.2202	-0.7248	2	-1.2202	1	
103	i	-1.2237	-0.7709	2	-1.2237	1	
103	j	-0.8228	-0.0595	2	-0.8228	1	
104	i	-0.8156	-0.1089	2	-0.8156	1	



- PROGETTO DEFINITIVO -

104	j	1.4804	2.6338	5	1.4804	1
105	i	1.4536	2.5247	5	1.4536	1
105	j	5.0784	7.0755	16	4.6136	11
106	i	4.0952	5.746	16	3.6812	11
106	j	7.8591	10.5391	16	6.5788	11
107	i	7.3657	9.9111	16	6.1332	11
107	j	10.3958	13.6971	16	8.4421	11
108	i	9.7247	12.8542	16	7.8565	11
108	j	11.5086	15.1188	16	9.1929	11
109	i	10.1681	12.7782	16	8.7017	11
109	j	10.405	13.0621	16	8.8957	11
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	10.405	12.9794	17	8.9784	10
201	j	10.0112	12.5156	17	8.6482	10
202	i	11.3254	15.1158	17	8.8262	10
202	j	8.4362	11.2251	16	6.8967	11
203	i	9.016	11.9462	16	7.4208	11
203	j	3.978	5.7295	16	3.5434	11
204	i	5.1431	7.2532	16	4.7337	11
204	j	-2.4765	-1.1624	10	-2.4765	1
205	i	-2.4926	-1.1716	11	-2.4926	1
205	j	-9.5381	-6.7411	10	-10.8085	17
206	i	-7.4637	-5.0635	11	-8.6687	16
206	j	-12.0604	-8.6933	10	-14.352	17
207	i	-11.3993	-8.2094	11	-13.5723	16
207	j	-14.3223	-10.6717	11	-17.0912	16
208	i	-13.7356	-9.6042	11	-17.0213	16
208	j	-14.6912	-11.1632	11	-17.528	16
209	i	-14.7762	-11.2286	11	-17.6286	16
209	j	-12.8444	-10.1107	11	-15.0879	16
210	i	-13.501	-10.3232	11	-16.1636	16
210	j	-9.2264	-7.5738	11	-10.5805	16
211	i	-11.7551	-9.8139	11	-13.3161	16
211	j	0.0194	0.0531	5	-0.0143	6
212	i	0.0047	0.0064	5	0.0031	6
212	j	0	0.0015	5	-0.0015	6
	-					

Elementi — Condizione Base — Inviluppo Superiore Inviluppo Inferiore

Trave Principale - Combinazione Sismica (SLV) - Punto 2 - Tensione Normale - [kN][cm]

Trave	Princ	ipale - C	Combinazione Sism	nica (SLV)	- Punto 2 -	Tensione Norm	ale - [kN][cm]
ELEM	NODO	Comb.Rif	Comb.MAX	Num.Max	Comb.MIN	Num.Min	
101	i	0	0.0016	9	-0.0016	2	
101	j	-0.008	-0.0063	8	-0.0097	3	
102	i	-0.008	0.0177	8	-0.0336	3	
102	j	1.8211	1.8211	1	1.0623	4	
103	i	1.82	1.855	7	1.0166	4	
103	j	1.2253	1.2253	1	-0.0605	4	
104	i	1.2198	1.265	7	-0.117	4	
104	j	-2.0781	-2.0341	8	-3.8972	3	

- PROGETTO DEFINITIVO -

105	i	-2.0201	-1.9185	8	-3.85	3
105	j	-6.842	-6.6511	8	-9.0974	3
106	i	-5.2345	-5.0126	8	-7.0374	3 3 3 3
106	j	-10.0507	-9.7227	8	-12.1687	3
107	i	-8.9037	-8.5364	8	-10.8579	3
107	j	-13.1924	-12.664	15	-15.431	12
108	i	-10.9542	-10.3678	15	-12.9613	12
108	j	-13.1496	-12.4505	15	-15.3278	12
109	í	-11.5404	-11.1618	15	-13,2172	12
109	j	-11.8292	-11.4408	15	-13.5225	12
1	i	0	0	1	0	1
1	j	0	0	1	0	1
201	i	-11.8292	-11.4364	14	-13.527	13
201	j	-11.3548	-10.9792	14	-13.025	13
202	i	-12.9385	-12,2384	14	-15.1136	13
202	j	-9.4248	-9.0414	4	-11.2039	7
203	i	-11.3496	-10.9109	14	-13,4691	13
203	j	-4.653	-4.3147	4	-6.5317	7
204	i	-6.6501	-6.2146	4	-9.2847	7
204	j	2.9724	3.2474	3	0.691	8
205	i	2.9917	3.2073	3	0.7698	8
205	j	11.263	11.9117	12	8.8114	15
206	í	7.8772	8.5491	12	5.9439	15
206	j	12.6621	14.0939	12	10.1012	15
207	i	10.5736	11.9435	12	8.2604	15
207	j	13.5278	15,2757	12	10.9472	15
208	i	13.3472	15.0525	12	10.8202	15
208	j	14.2374	15.9126	12	11.8923	15
209	i	14.9667	16.6121	12	12.6171	15
209	j	14.5494	15.7106	12	12.8329	15
210	i	14.765	15.9316	12	13.0352	15
210	j	11.3224	11.9171	12	10.3614	15
211	i	14.2377	14.8888	12	13.1262	15
211	j	-0.0285	0.0051	4	-0.0621	7
212	i	-0.007	-0.0054	4	-0.0086	7
212	j	0	0.0015	4	-0.0015	7
	_					

Sezione N.1020 [211 i]

Lamiera laterale inclinata

Azione flettente longitudinale

$$\psi = -1.210 \hspace{0.5cm} b = 2280 \hspace{0.1cm} mm \hspace{0.5cm} t = 20 \hspace{0.1cm} mm \hspace{0.1cm} k_{\sigma} = 29.20 \hspace{0.1cm} \lambda_p = 0.916 \hspace{0.1cm} \rho = 0.974$$

 $b_{eff} = 1000 \text{ mm } b_{e1} = 400 \text{ mm } b_{e2} = 600 \text{ mm}$

Azione flettente trasversale

$$\psi = 0.423$$
 b= 2280 mm t=20 mm $k_{\sigma} = 5.56$ $\lambda_{p} = 2.100$ $\rho = 0.433$

 $b_{eff} = 988 \text{ mm } b_{e1} = 430 \text{ mm } b_{e2} = 550 \text{ mm}$

Lamiera centrale

$$\psi = 0.0$$
 b= 830 mm t=14 mm $k_{\sigma} = 7.81$ $\lambda_p = 0.922$ $\rho = 0.890$

 $b_{eff} = 739 \ mm \ b_{e1} = 295 \ mm \ b_{e2} = 443 \ mm$

Piastra irrigidita superiore

lamiera t= 14 Irr. 200×25 interasse 400 mm cl.2

 ρ_{i} = 6.68 cm λ =0.882 α = 0.415 ρ = χ =0.639

I corrispondenti valori di tensione in grado di estremo si modificano come segue:

- PROGETTO DEFINITIVO -

	Sezione INTERAMENTE REAGENTE Tensione [kN/cm²]	Sezione EFFICACE Tensione [kN/cm²]	Fattore di Riduzione
Punto 1 (estradosso)	-25,30	-31,72	0,798
Punto 2 (intradosso)	+30,03	+30,97	0,970

Sezione N.1040 [209 i]

Lamiera laterale inclinata

Azione flettente longitudinale

$$\psi = -1.208$$
 b= 2530 mm t=20 mm $k_{\sigma} = 29.15$ $\lambda_{p} = 1.018$ $\rho = 0.887$

$$b_{eff} = 1010 \text{ mm } b_{e1} = 406 \text{ mm } b_{e2} = 609 \text{ mm}$$

Azione flettente trasversale

$$\psi = 0.536$$
 b= 2530 mm t=20 mm $k_{\sigma} = 5.17$ $\lambda_{p} = 2.418$ $\rho = 0.380$

$$b_{eff} = 961 \text{ mm } b_{e1} = 430 \text{ mm } b_{e2} = 530 \text{ mm}$$

Lamiera centrale

$$\psi = -0.248$$
 b= 1510 mm t=16 mm $k_{\sigma} = 9.97$ $\lambda_p = 1.299$ $\rho = 0.680$

$$b_{eff} = 823 \ mm \ b_{e1} = 329 \ mm \ b_{e2} = 494 \ mm$$

Piastra irrigidita superiore

lamiera
$$t= 24$$
 Irr. 200×25 interasse 400 mm cl.2

$$\rho_{i}$$
= 6.32 cm λ =0.310 α = 0.444 ρ = χ =0.950

I corrispondenti valori di tensione massima si modificano come segue:

I corrispondenti valori di tensione in grado di estremo si modificano come segue:

	Sezione INTERAMENTE REAGENTE Tensione [kN/cm²]	Sezione EFFICACE Tensione [kN/cm²]	Fattore di Riduzione
Punto 1 (estradosso)	-32,34	-33,34	0,970
Punto 2 (intradosso)	+29,96	+30,78	0,973

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- PROGETTO DEFINITIVO -

Sezione N.1061 [206 j]

Lamiera laterale inclinata

Azione flettente longitudinale

$$\psi = -1.230$$
 b= 2830 mm t=20 mm $k_{\sigma} = 29.73$ $\lambda_{p} = 1.127$ $\rho = 0.810$

$$b_{eff} = 1020 \text{ mm}$$
 $b_{e1} = 410 \text{ mm}$ $b_{e2} = 600 \text{ mm}$

Azione flettente trasversale

$$\psi = 0.536$$
 b= 2830 mm t=20 mm $k_{\sigma} = 5.16$ $\lambda_{p} = 2.705$ $\rho = 0.343$

$$b_{eff} = 970 \text{ mm } b_{e1} = 435 \text{ mm } b_{e2} = 534 \text{ mm}$$

Lamiera centrale

$$\psi = -0.379$$
 b= 1890 mm t=20 mm $k_{\sigma} = 11.60$ $\lambda_{p} = 1.206$ $\rho = 0.730$

$$b_{eff} = 1000 \text{ mm}$$
 $b_{e1} = 400 \text{ mm}$ $b_{e2} = 600 \text{ mm}$

Piastra irrigidita superiore

lamiera
$$t=20$$
 Irr. 200×25 interasse 400 mm cl.2

$$\rho_{l}$$
= 6.45 cm λ =0.455 α = 0.434 ρ = χ =0.881

I corrispondenti valori di tensione massima si modificano come segue:

I corrispondenti valori di tensione in grado di estremo si modificano come segue:

	Sezione INTERAMENTE REAGENTE Tensione [kN/cm²]	Sezione EFFICACE Tensione [kN/cm²]	Fattore di Riduzione
Punto 1 (estradosso)	-27,79	-30,88	0,900
Punto 2 (intradosso)	+28,59	+28,38	1,008

Sezione N.1082 [204 j - 205 i]

Lamiera laterale inclinata

Azione flettente longitudinale

$$\psi = -1.421$$
 b= 3070 mm t=20 mm $k_{\sigma} = 35.05$ $\lambda_{p} = 1.127$ $\rho = 0.818$

$$b_{eff} = 1038 \text{ mm}$$
 $b_{e1} = 415 \text{ mm}$ $b_{e2} = 623 \text{ mm}$

Azione flettente trasversale

$$\psi = 0.478$$
 b= 3070 mm t=20 mm $k_{\sigma} = 5.36$ $\lambda_{p} = 2.880$ $\rho = 0.324$

$$b_{eff} = 994 \text{ mm } b_{e1} = 440 \text{ mm } b_{e2} = 554 \text{ mm}$$

Lamiera centrale

- PROGETTO DEFINITIVO -

 $\psi = \text{-0.522} \qquad b = 2040 \text{ mm} \qquad t = 20 \text{ mm} \ k_{\sigma} = 13.76 \ \lambda_{p} = 1.195 \ \rho = 0.741$

 $b_{eff} = 993 \ mm \ b_{e1} = 397 \ mm \ b_{e2} = 595 \ mm$

Piastra irrigidita superiore

lamiera t= 12 Irr. 200×25 interasse 400 mm

cl.4 --- lamiera ridotta 380×12

 $\rho_1 = 6.74 \text{ cm}$

 $\lambda = 0.872$

 $\alpha = 0.414$

 $\rho = \chi = 0.646$

I corrispondenti valori di tensione massima si modificano come segue:

I corrispondenti valori di tensione in grado di estremo si modificano come segue:

	Sezione INTERAMENTE REAGENTE Tensione [kN/cm²]	Sezione EFFICACE Tensione [kN/cm²]	Fattore di Riduzione
Punto 1 (estradosso)	-9,41	-12,17	0,773
Punto 2 (intradosso)	+11,14	+11,65	0,956

Sezione N.1110 [202 i]

Lamiera laterale inclinata

Azione flettente longitudinale

$$\psi = -0.746$$
 b= 3340 mm t=20 mm $k_{\sigma} = 17.95$ $\lambda_{p} = 1.713$ $\rho = 0.541$

 $b_{eff} = 1036 \text{ mm}$ $b_{e1} = 414 \text{ mm}$ $b_{e2} = 622 \text{ mm}$

Azione flettente trasversale

$$\psi = 0.379$$
 b= 3340 mm t=20 mm $k_{\sigma} = 5.73$ $\lambda_{p} = 3.032$ $\rho = 0.309$

 $b_{eff} = 1032 \text{ mm } b_{e1} = 445 \text{ mm } b_{e2} = 586 \text{ mm}$

Lamiera centrale

$$\psi = -2.250$$
 b= 1950 mm t=20 mm $k_{\sigma} = 63.16$ $\lambda_{p} = 0.530$ $\rho = 1.0$

Lamiera inferiore

$$\psi = 0.389$$
 b= 1430 mm t=80 mm $k_{\sigma} = 5.69$ $\lambda_{p} = 0.325$ $\rho = 1.0$

I corrispondenti valori di tensione massima si modificano come segue:

I corrispondenti valori di tensione in grado di estremo si modificano come segue:

- PROGETTO DEFINITIVO -

	Sezione INTERAMENTE REAGENTE Tensione [kN/cm²]	Sezione EFFICACE Tensione [kN/cm²]	Fattore di Riduzione
Punto 1 (estradosso)	+26,24	+26,35	0,996
Punto 2 (intradosso)	-28,67	-29,73	0,964

C.6.2 VERIFICHE ALLO SLU PER AZIONI TAGLIANTI E TORCENTI

Nel seguito sono riportate le verifiche per le azioni flettenti e torcenti dell'impalcato. La successiva progettazione esecutiva potrà modificare in tutto o in parte la previsione degli irrigidimenti longitudinali e trasversali, fermo restando il rispetto dei requisiti di sicurezza previsti dalle normative.

Sezione di appoggio centrale

Azione tagliante : 6800,00 kN Azione torcente : 2000,00 kNm

Le azioni sulle pareti della sezione per effetto della sollecitazione flettente sono minori di:

 $T_T = 2000,00 \times 3.50/(2 \times 10.92) = 320.51 \text{ kN}$

La suddivisione del taglio avviene sulla base delle rispettive aree di taglio e precisamente:

 $A_{wl} = 289 \times 2 \times 2 = 1156 \text{ cm}^2$ $A_{wc} = 213 \times 2 = 426 \text{ cm}^2$

I corrispondenti coefficienti $C_{T1} = 1156/(2 \times 1156 + 426) = 0.42$ $C_{Tc} = 426/(2 \times 1156 + 426) = 0.16$

Complessivamente il taglio di verifica assume, a favore di sicurezza, i seguenti valori:

Anime laterali $V_{Ed} = 6800 \times 0.42 \times (3540/2870) + 320.51 = 3843.24 \text{ kN}$

Anima centrale $V_{Ed} = 6800 \times 0.16 = 1088 \text{ kN}$

Anima laterale

h= 2870 mm b=3540 mm $V_{Ed}= 3843.24 \text{ kN}$ t= 20 mm

Taglio resistente, $V_{cRd} = 354 \times 2 \times 35.5 / (1.73 \times 1.05) = 13836 \text{ kN}$

 $V_{cRd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

- PROGETTO DEFINITIVO -

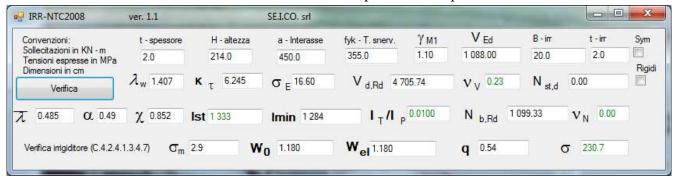
Per la verifica di stabilità si considera la condizione del pannello compreso tra due diaframmi e con un irrigiditore 350×35 posto al centro del campo.

Il valore della massima azione tagliante verso fenomeni di instabilità, $V_{b,Rd} = 8186$ kN, maggiore del massimo valore $V_{Ed} = 3844$ kN.

 $V_{b,Rd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Anima centrale


h= 2140 mm b=2140 mm $V_{Ed}= 1088 \text{ kN}$ t= 20 mm

Taglio resistente, $V_{cRd} = 214 \times 2 \times 35.5/(1.73 \times 1.05) = 8364 \text{ kN}$

 $V_{cRd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Per la verifica di stabilità si considera la condizione del pannello compreso tra due diaframmi

Il valore della massima azione tagliante verso fenomeni di instabilità, $V_{b,Rd}=4705\ kN$, maggiore del massimo valore $V_{Ed}=1088\ kN$

 $V_{b,Rd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Sezione di appoggio laterale - campata lunga

Azione tagliante : 4500,00 kN

- PROGETTO DEFINITIVO -

Azione torcente : 2000,00 kNm

Le azioni sulle pareti della sezione per effetto della sollecitazione flettente sono minori di:

 $T_T = 2000,00 \times 2.40/(2 \times 5.09) = 471.51 \text{ kN}$

La suddivisione del taglio avviene sulla base delle rispettive aree di taglio e precisamente:

 $A_{wl} = 145 \times 2 \times 2 = 580 \text{ cm}^2$

$$A_{wc} = 70 \times 1.4 = 98 \text{ cm}^2$$

I corrispondenti coefficienti $C_{Tl} = 580/(2 \times 580 + 98) = 0.46$ $C_{Tc} = 98/(2 \times 580 + 98) = 0.08$

Complessivamente il taglio di verifica assume, a favore di sicurezza, i seguenti valori:

Anime laterali

$$V_{Ed} = 4500 \times 0.46 \times (2400/1450) + 471.51 = 3897.72 \text{ kN}$$

Anima centrale

$$V_{Ed} = 4500 \times 0.08 = 360.00 \text{ kN}$$

Anima laterale

h= 1450 mm b=2400 mm $V_{Ed}= 3897.72 \text{ kN}$ t= 20 mm

Taglio resistente, $V_{cRd} = 240 \times 2 \times 35.5 / (1.73 \times 1.05) = 9380.67 \text{ kN}$

 $V_{cRd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Per la verifica di stabilità si considera la condizione del pannello compreso tra due diaframmi e con irrigiditori 350×35 posti ai terzi del campo

Il valore della massima azione tagliante verso fenomeni di instabilità, $V_{b,Rd}=8291\ kN,$ maggiore del massimo valore $V_{Ed}=3898\ kN$

 $V_{b,Rd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Anima centrale

h=700 mm b=700 mm $V_{Ed}=360.00 \text{ kN}$ t=14 mm

Taglio resistente, $V_{cRd} = 70 \times 1.4 \times 35.5 / (1.73 \times 1.05) = 1915.22 \text{ kN}$

- PROGETTO DEFINITIVO -

 $V_{cRd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Per la verifica di stabilità si considera la condizione del pannello compreso tra due diaframmi

Il valore della massima azione tagliante verso fenomeni di instabilità, $V_{b,Rd}=2151\ kN,$ maggiore del massimo valore $V_{Ed}=360\ kN$

 $V_{b,Rd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Sezione di appoggio laterale - campata corta

Azione tagliante : 2000,00 kN Azione torcente : 2000,00 kNm

Le azioni sulle pareti della sezione per effetto della sollecitazione flettente sono minori di:

 $T_T = 2000,00 \times 2.40/(2 \times 5.06) = 474.31 \text{ kN}$

La suddivisione del taglio avviene sulla base delle rispettive aree di taglio e precisamente:

 $A_{wl} = 145 \times 2 \times 1.6 = 464 \text{ cm}^2$ $A_{wc} = 70 \times 1.4 = 98 \text{ cm}^2$

I corrispondenti coefficienti $C_{Tl} = 464/(2 \times 464 + 98) = 0.45$ $C_{Tc} = 98/(2 \times 464 + 98) = 0.10$

Complessivamente il taglio di verifica assume, a favore di sicurezza, i seguenti valori:

Anime laterali $V_{Ed} = 2000 \times 0.45 \times (2400/1450) + 474.31 = 1963.96 \text{ kN}$

Anima centrale $V_{Ed} = 2000 \times 0.10 = 200.00 \text{ kN}$

Anima laterale

h= 1450 mm b=2400 mm $V_{Ed}= 1963.96 \text{ kN}$ t= 16 mm

Taglio resistente, $V_{cRd} = 240 \times 1.6 \times 35.5 / (1.73 \times 1.05) = 7504.54 \text{ kN}$

 $V_{cRd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

- PROGETTO DEFINITIVO -

Per la verifica di stabilità si considera la condizione del pannello compreso tra due diaframmi con un irrigiditore 250×25 posto al centro del campo.

Il valore della massima azione tagliante verso fenomeni di instabilità, $V_{b,Rd}=3067~kN$, maggiore del massimo valore $V_{Ed}=4007~kN$

 $V_{b,Rd} > 2 V_{Ed}$

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Anima centrale

h=700 mm b=700 mm $V_{Ed}=200 \text{ kN}$ t=14 mm

Taglio resistente, $V_{cRd}=69\times1.4\times35.5/(1.73\times1.05)=1887.86$ kN $V_{cRd}>2$ V_{Ed}

La resistenza a flessione non è influenzata dalla resistenza a taglio.

Per la verifica di stabilità si considera la condizione del pannello compreso tra due diaframmi

Il valore della massima azione tagliante verso fenomeni di instabilità, $V_{b,Rd}=2151~kN$, maggiore del massimo valore $V_{Ed}=200~kN$

- PROGETTO DEFINITIVO -

C.6.3 EFFETTI LOCALI

Irrigiditori appoggi

Appoggi laterali

 $N_{Ed} = 2300 \text{ kN}$

 $N_{Rd} = 20 \times 2.5 \times 2 \times 35.5 / 1.05 = 3380 \text{ kN}$

 $N_{Ed}/N_{Rd} = 0.68 < 1.0$

Appoggio centrale

 $N_{Ed} = 12500 \text{ kN}$

 $N_{Rd} = 100 \times 4.0 \times 35.5 / 1.05 = 13523 \text{ kN}$

 $N_{Ed}/N_{Rd} = 0.92 < 1.0$

Barre di tenuta centrali

 $T_{Ed} = 2500 \text{ kN}$

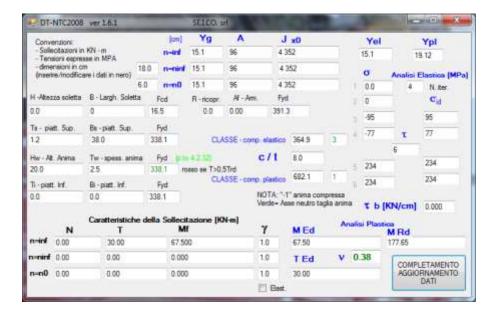
 $T_{Rd} = 0.80 \times 80 \times 33.16 \times 2 = 4244 \ kN$

 $T_{Ed}/T_{Rd} = 0.58 < 1.0$

Irrigiditori di piastra ortotropa

Per la verifica dell'irrigiditore della piastra ortotropa superiore si considera l'azione di un mezzo isolato come prescritto dalla Circolare delle norme NTC2008 agente sul singolo irrigiditore in condizione di semplice appoggio. Le sollecitazioni di verifica sono:

P = 80/2 = 40 kN


 $V_{Ed} = 40/2 \times 1.50 = 30 \text{ kN}$

 $M_{Ed} = 40 \times 4.50/4 \times 1.50 = 67.50 \ kNm$

Le verifiche di sicurezza sono riportate nel quadro sotto

- PROGETTO DEFINITIVO -

Aste di diaframma

Per le aste di diaframma si considera una verifica semplificata, a favore di sicurezza, scomponendo in modo uniforme la coppia torcente applicata alle varie cellule resistenti. L'azione di verifica è costituita dalla coppia torcente della folla compatta su un solo lato della passerella.

Dati di riferimento: Ω = 5.0 m² l= 1.60 m

 $T_{Ed} = 5.00 \times 3.0 \times (3.0/2) \times 4.50 \times 1.50 = 151.87 \text{ kNm}$

 $N_{Ed} = (151.87/8) \times 1.60/(2 \times 5.0) = 3.04 \text{ kN}$

Profilo L 120×60×10 cl. 3

 $L_0 = 1.60 \text{ m}$ $\rho = 1.27 \text{ cm}$ $\lambda = 125.9$ $\chi = 0.293$

 $N_{Rd} = 0.293 \times 17.1 \times 35.5/1.05 = 169.4 \text{ kN}$

 $N_{Ed}\!/N_{Rd} = 0.02 < 1.0$

C.7 VERIFICHE ALLO STATO LIMITE ULTIMO - SOTTOSTRUTTURE

C.7.1 PILA CENTRALE

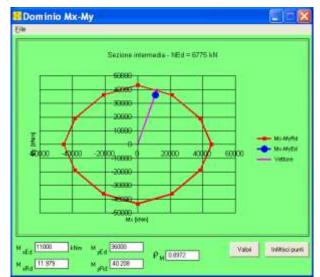
La pila centrale è costituita da un fusto suddiviso in due tronchi delle dimensioni di 250×260 per la parte superiore e 345×400 per la parte inferiore.

Verifica allo stato limite ultimo (SLU)

Parte superiore del fusto 250×260 armata con $2\times15\Phi30$ su ciascun lato Sollecitazioni di verifica:

 $N_{Ed\text{-}SLU} = 6775 \ kN$

 $H_{LEd-SLU} = 4600 \text{ kN}$


 $H_{TEd\text{-}SLU} = 1400 \text{ kN}$

 $M_{TEd\text{-}SLU} = 11000 \ kNm$

 $M_{LEd\text{-}SLU} = 36000 \; kNm$

$N_{\text{Ed-Rara}} = 6620 \text{ kN}$	$N_{\text{Ed-Freq}} = 6685 \text{ kN}$	$N_{Ed\text{-}QPerm} = 6700 \text{ kN}$
$M_{TEd\text{-Rara}} = 5800 \text{ kNm}$	$M_{TEd ext{-}Freq} = 1160 \text{ kNm}$	$M_{TEd-QPerm} = 0 \text{ kNm}$
$M_{LEd-Rara} = 3765 \text{ kNm}$	$M_{LEd-Freq} = 0 \text{ kNm}$	$M_{LEd-QPerm} = 0 \text{ kNm}$

Verifica per azioni flettenti

- PROGETTO DEFINITIVO -

SLE

Rara

SLE Quasi Permanente

$$\sigma_C = -3,88 \text{ MPa} < 0,60 \text{ f}_{ck} = 19,92 \text{ MPa}$$

 σ_{C} = - 0,86 MPa < 0,45 f_{ck} = 14,94 MPa

$$\sigma_s = 34,64 \text{ MPa} < 0.8 \text{ } f_{yk} = 360 \text{ MPa}$$

 σ_s <0 Sezione Interamente Compressa

Verifica per azioni taglianti

-- Azione longitudinale

 $A_{st} = 10\Phi 12 = 11.3 \text{ cm}^2$

passo 20 cm

 $V_{Rsd} = 0.9 \times 240 \times 11.3/20 \times 45/1.15 = 4775 \text{ kN}$

 $V_{Rsd}/H_{Ed} = 0.96 < 1.0$

-- Azione trasversale

 $v_{cmin} = 0.25 \text{ MPa}$

 $V_{Rsd} = 250 \times 250 \times 0,25E-1 = 1562 \text{ kN}$

 $V_{Rsd}/H_{Ed} = 0.89 < 1.0$

Parte inferiore del fusto 345×400 armata con $2\times25\Phi30$ e $2\times20\Phi30$ sui due lati Sollecitazioni di verifica

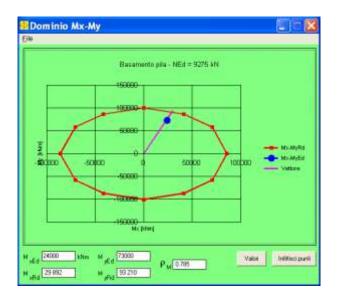
 $N_{Ed} = 9275 \ kN$

 $H_{LEd} = 5800 \text{ kN}$

 $H_{TEd} = 2000 \; kN$

 $M_{TEd} = 24000 \ kNm$

 $M_{LEd} = 73000 \ kNm$


$$\begin{split} N_{Ed\text{-}Rara} &= 9120 \text{ kN} & N_{Ed\text{-}Freq} &= 9180 \text{ kN} & N_{Ed\text{-}QPerm} &= 9195 \text{ kN} \\ M_{TEd\text{-}Rara} &= 10490 \text{ kNm} & M_{TEd\text{-}Freq} &= 2100 \text{ kNm} & M_{TEd\text{-}QPerm} &= 0 \text{ kNm} \\ M_{LEd\text{-}Rara} &= 7060 \text{ kNm} & M_{LEd\text{-}QPerm} &= 0 \text{ kNm} \end{split}$$

Verifica per azioni flettenti

- PROGETTO DEFINITIVO -

SLE Rara SLE Quasi Permanente

 $\sigma_{C} = \text{-2,65} < 0,\!60 \; f_{ck} = 19,\!92 \; MPa$

 $\sigma_{C} =$ - 0,80 MPa < 0,45 $f_{ck} =$ 14,94 MPa

 $\sigma_s = 25{,}41 \; MPa < 0{,}8 \; f_{yk} = 360 \; MPa$

 σ_s < 0 Sezione Interamente Compressa

Verifica per azioni taglianti

-- Azione longitudinale

$$A_{st} = 8\Phi 12 = 9,04 \text{ cm}^2$$

passo 20 cm

 $V_{Rsd} = 0.9 \times 390 \times 9.04/20 \times 45/1,15 = 6208 \text{ kN}$

 $V_{Rsd}/H_{Ed} = 0.94 < 1.0$

-- Azione trasversale

 v_{cmin} = 0,24 MPa

 $V_{Rsd} = 400 \times 335 \times 0.24 \text{E-1} = 3216 \ kN$

 $V_{Rsd}/H_{Ed} = 0.62 < 1.0$

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- PROGETTO DEFINITIVO -

C.7.2 BASAMENTO

Si considera la massima azione sul palo, $N_{Ed} = 9500 \text{ kN}$

Il palo è inserito nel blocco di fondazione armato ortogonalmente con $50\Phi30$ sul lato lungo (B=3,64) e $30\Phi30$ sul lato corto (B=1.50m).

Le corrispondenti azioni flettenti resistenti sono:

 $M_T = 7,06 \times 30 \times 45/1,15 \times 2,40 = 19890 \text{ kNm}$

 $F_{RT} = 19890/1,50 = 13260 \text{ kN}$

 $M_L = 7,06 \times 50 \times 45/1,15 \times 2,40 = 33151 \text{ kNm}$

 $F_{RL} = 33151/3,64 = 9107 \text{ kN}$

 $F_{Rd} = 13260 + 9107 = 22367 \text{ kN} \sim 2,35 \times N_{Ed}$

C.7.3 MURI DI SOSTEGNO

Dati caratteristici

 $H= 2,60 \text{ m} \quad \phi = 30 \quad c=0$

Stato limite di ribaltamento - EQU γ_{g1} =0,9 γ_{ϕ} =1,25

 $K_a = 0.409 \quad \gamma = 19 \text{ kN/m}^3$

 $K_h = 0.24 \times 0.147 = 0.035$

 $S = (1.0+0.035)/2 \times 2.60^2 \times 19 \times 0.409 = 27.18 \text{ kN}$

 $P = 2,60 \times 1,55 \times 19 = 76,57 \text{ kN}$

 M_{SEd} = 1,50 × 27,18 × (2,60/3+0,40) = 51,64 kNm

 M_{SRd} = 0,90 × 76,57 × 1,475 = 101,64 kNm

 $M_{SEd}/M_{SRd} = 0.50 < 1.0$

Stato limite di scorrimento - STR (A1+M1+R3)

 $S_{Ed} = 1,50 \times 27,18 = 40,77 \text{ kN}$

 $S_{Rd} = 76,57 \times tg(30) = 44,20 \text{ kN}$

 $S_{Ed}/S_{Rd} = 0.92 < 1.0$

Stato limite di schiacciamento

e = 1.12 - (112.94-34.42)/76.57 = 0.09 m

 σ < 2×76,57E2/(225×100) = 0,7 daN/cm²

- PROGETTO DEFINITIVO -

Verifica di sicurezza

sezione attacco parete-fondazione

 $M_{Ed} = 1,5 \times 27,18 \times 2,60/3 = 35,33 \text{ kNm}$

hu = 28 cm Af= $1\Phi 16/20 = 10,05 \text{ cm}^2$ B=100 cm

y=7.8 cm ho = 25.4 cm

 $\sigma_f = 138 \text{ MPa} < 0.8 \text{ f}_{yk}$ $\sigma_c = 3.5 \text{ MPa} < 0.45 \text{ f}_{ck}$

C.7.4 FONDAZIONI

La caratterizzazione del sottosuolo dal punto di vista geotecnico è tratta dalla relazione geologicogeotecnica e riportata nel quadro seguente.

Approdo in s× idraulica	Z (m)	γ (KN/m³)	Φ'	N _{SPT}	c' (KPa)	Origine dati
UNITA A	0-8	18,78	29	71	21	Lab
UNITA B	8 –22	18	35	32	0	Sito
UNITA C	22 - 35	20,21	22	-	29	Lab
FALDA	-11					

Sondaggio1 bocca foro quota 40.10 m slm

Pila in golena in sx idraulica	Z (m)	$\gamma (KN/m^3)$	Φ'	N _{SPT}	c' (KPa)	Origine dati
UNITA A	0-5	-	-	-	-	
UNITA B	5 - 16,5	18	34	14	0	Sito
UNITA C	16,5 - 35,5	19,43	17,9	-	33	Lab
UNITA D1	35,5 - 43	18	30	22	0	Sito
UNITA D2	43 - 50	20	33	-	4	Lab
FALDA	-3					

Sondaggio2 bocca foro quota 33.40 m slm

approdo in dx idraulica	Z (m)	$\gamma (KN/m^3)$	Ф°	N_{SPT}	cu (KPa)	Origine dati
UNITA A	0-11	19	28	8	-	Sito
UNITA B	11-27	18	32	35	-	Sito
UNITA C	27-35	19	26,5	-	25	Lab
FALDA	-11					

Sondaggio3 bocca foro quota 40.65 slm

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- PROGETTO DEFINITIVO -

Per le verifiche geotecniche viene seguito l'approccio 2 considerando i parametri (A1+M1+R3)

Pali

Si considera il palo di lunghezza pari a 30,00 metri con la quota di testa palo a +25,11

Dati caratteristici di calcolo

Quota della superficie di zero litostatico: +33,11 m

Quota di falda: +28,11 m Lunghezza palo: 30 m

Diametro: 1,50 m L/D = 20

Caratterizzazione del sottosuolo attraversato dal palo:

[kN - m]

Profondità	Lunghezza	Φ'	c'	σ_{m}	σ_{p}
25,11 - 16,90	8,21	34	0	146,80	
16,902,10	19,00	17,9	33	265,18	
-2,104,89	2,79	30	0	361,80	373,00

Nq(30) = 20

Portata laterale

 $S_L = \pi \times 1,50 \times (8,21 \times (146,80 tg(34) + 19,00 \times (265,18 tg(17,9) + 33) + 2,79 \times (361,80 tg(30)) = 17200 \ kN_{10} + 100 tg(30) + 100 tg(30) = 17200 \ kN_{10} + 100 tg(30) = 17200 \ k$

Portata di punta

 $S_P = 1,767 \times 373,00 \times 20 = 13182 \text{ kN}$

Peso proprio del palo: $1,767\times25\times30=1325$ kN

 $R_{Lk} = 17200/1,70 = 10117 \text{ kN}$

 $R_{Pk} = 13182/1,70 = 7754 \text{ kN}$

 $R_d = 7754/1,35+10117/1,15 - 1325=13216 \text{ kN}$ (in compressione)

 $R_d = 10117/1,25 = 8093 \text{ kN}$ (in trazione)

Carico di verifica dei pali (SLU)

 $N_{Ed} = 9500 \text{ kN (compressione)}$ $< R_d$ $N_{Ed} = -2500 \text{ kN (trazione)}$ $< R_d$

 $H_{Ed} = 1100 \text{ kN}$

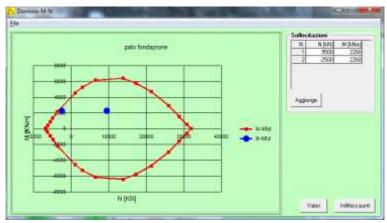
Il parametro di rigidezza del terreno viene assunto pari a $\lambda = 8,25$ m (Winckler, k=3kg/cm³)

Sollecitazioni di verifica

 $N_{Ed} = 9500 \text{ kN}$ (compressione)

 $N_{Ed} = -2500 \text{ kN (trazione)}$

 $H_{Ed} = 1100 \text{ kN}$



- PROGETTO DEFINITIVO -

 $M_{Ed} = 1100 \times 8,25/4 = 2268 \text{ kNm}$

Verifica per le azioni flettenti

Sezione resistente circolare D=150 cm armata con 25 Φ30

Verifica per le azioni taglianti

Armatura resistente: 2F10 + 1F20, passo 12.5 cm = $(0.78 \times 2 + 3.14) / 12.5$

 $V_{Rsd} = 0.9 \times 145 \times 4.70 / 12.5 \times 39.13 = 1920 \text{ kN}$

 $V_{Rsd}/H_{Ed} = 0.57 < 1.0$

Diaframmi

La verifica sui diaframmi si esegue a favore di sicurezza considerando i singoli elementi isolati. Sollecitazioni di verifica

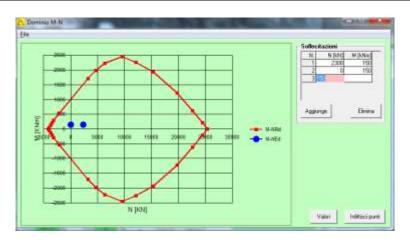
 $N_{Ed} = 2300 \text{ kN}$

 $H_{Ed} = 30,00 \times 2,50 \times 1,50 = 112,50 \text{ kN}$

 $M_{Ed} = 112,50 \times (4,0/3) = 150,00 \text{ kNm}$

Carico limite del diaframma

Nq = 20 $\sigma_p = 12,0 \times 18 = 216,00 \text{ kN/m}^2$


 $R_p = 20 \times 2,50 \times 0,60 \times 216/(1,70 \times 1,35) = 2823 \ kN \ > N_{Ed}$

Verifica per azioni flettenti

- PROGETTO DEFINITIVO -

Verifica per azioni taglianti

 $v_{cmin} = 0.35 \text{ MPa}$

 $V_{Rd} = 3.5 \text{E-}2 \times 250 \times 55 = 481 \text{ kN} > H_{Ed}$

- PROGETTO DEFINITIVO -

C.8 VERIFICHE ALLO STATO LIMITE DI ESERCIZIO (SLE) - IMPALCATO

Nel seguito si riportano le verifiche allo stato limite di esercizio dell'impalcato, trattandosi di struttura in acciaio, esse si riferiscono alla funzionalità in termini di spostamenti massimi attesi sulla struttura.

C.8.1 VERIFICHE DI DEFORMABILITÀ

Al fine di valutare gli spostamenti che interessano la struttura, si è fatto riferimento al modello agli elementi finiti descritto nel capito "C.4 - Modellazione e Schematizzazione Strutturale".

Inflessioni verticali elastiche

Nel seguito, facendo riferimento ai nodi 105 e 107, rispettivamente appartenenti alla campata di luce pari a 68,55 e 112,55 metri, si riportano gli spostamenti associati alle diverse condizioni di carico elementari.

	Spostamenti		
	S _{V 105} [cm]	S_{V 117} [cm]	
Peso Permanente Strutturale (g ₁)	6,15	- 53,95	
Peso Permanente Non Strutturale (g ₂)	0,20	- 8,28	
Variazione Termica (ε ₃)	± 0,52	± 1,91	
Azione del Vento (q ₅)	0,00	0,00	
Carico Accidentale (q ₁ +q ₂)	- 11,26 + 11,24	- 35,20 + 7,52	

I valori degli spostamenti sono positivi se rivolti verso l'alto

Tali spostamenti sono congruenti con le prestazioni richieste alla struttura, con riferimento alle esigenze statiche, funzionali ed estetiche.

- PROGETTO DEFINITIVO -

Spostamenti orizzontali trasversali

Sempre con riferimento ai nodi 105 e 117, si riportano gli spostamenti orizzontali in direzione trasversale:

	Sposta	amenti
	S_{HT 105} [cm]	S_{HT 117} [cm]
Azione del Vento (q ₅)	± 0,09	± 5,11

Spostamenti orizzontali longitudinali

Con riferimento alle estremità, nodi 102 e 121, si ha:

	Spostamenti	
	S _{HL 102} [cm]	S _{HL 121} [cm]
Variazione Termica (ε ₃)	± 2,47	± 4,05
Carico Accidentale (frenamento q ₃)	± 0,22	± 0,22

Tali spostamenti sono congruenti con le prestazioni richieste alla struttura e ai dispositivi di appoggio, con riferimento alle esigenze statiche, funzionali ed estetiche.

CITTA' METROPOLITANA DI FIRENZE

PASSERELLA CICLO-PEDONALE

- PROGETTO DEFINITIVO -

C.9 VERIFICHE ALLO STATO LIMITE DI ESERCIZIO - SOTTOSTRUTTURE

Nel seguito, si riportano le verifiche alla fessurazione relative alla pila centrale.

Verifiche a fessurazione

Parte superiore del fusto 250×260 armata con $2\times15\Phi30$ su ciascun lato Sollecitazioni di verifica:

$$\begin{split} N_{Ed\text{-}Freq} &= 6685 \text{ kN} & N_{Ed\text{-}QPerm} &= 6700 \text{ kN} \\ M_{TEd\text{-}Freq} &= 1160 \text{ kNm} & M_{TEd\text{-}QPerm} &= 0 \text{ kNm} \\ M_{LEd\text{-}Preq} &= 0 \text{ kNm} & M_{LEd\text{-}QPerm} &= 0 \text{ kNm} \end{split}$$

Al fine della verifica a fessurazione, si è considerata una classe di esposizione ordinaria XF1 (Grado moderato di saturazione, in assenza di agenti disgelanti; es: superfici verticali esposte alla pioggia e al gelo – Tab.12 delle "Linee guida per il calcestruzzo strutturale emesse dal Servizio Tecnico Centrale dei Lavori Pubblici"). Trattandosi di una struttura in calcestruzzo armato, per la quale dovrà considerarsi un'armatura di tipo poco sensibile alla corrosione, gli stati limite da dover verificare sono i seguenti:

Gruppo di	Condizione	Combinazione	Armatura Poco Sensibile	
esigenze	Ambientale	di Azione	Stato Limite	$\mathbf{w_d}$
a	Ordinarie	frequente	ap. fessure	\leq w ₃ = 0,4 mm
a	Ordinarie	quasi permanente	ap. fessure	\leq w ₂ = 0,3 mm

Considerando un'armatura costituita da barre del diametro \emptyset 30, i limiti tensionali nell'acciaio sono i seguenti (Tab. C4.1.II della Circolare applicativa del NTC 2008)

	$\sigma_s[MPa]$	σ_s [MPa] (interpolato)	
Combinazione frequente	< 200 (barre Ø32)	(206 (hama (20))	
Comomazione nequente	< 240 (barre Ø20)	< 206 (barre Ø30)	
Combinazione quasi permanente	< 160 (barre Ø32)	(171 (1 (20)	
Comomazione quasi permanente	< 200 (barre Ø25)	< 171 (barre Ø30)	

Tensioni compatibili con quelle presenti nella struttura.

- PROGETTO DEFINITIVO -

SLE Frequente

SLE Quasi Permanente

 $\sigma_s < 0 \label{eq:sigmass}$ Sezione Interamente Compressa

 $\sigma_s < 0$

Sezione Interamente Compressa

Considerata la spaziatura massima tra le barre pari a 200 mm, l'ulteriore condizione sulla tensione di trazione nell'acciaio è la seguente (Tab. C4.1.III della Circolare applicativa del NTC 2008):

	$\sigma_{\rm s}$
	[MPa]
Combinazione frequente	280
Combinazione quasi permanente	240

anch'esse compatibili con le tensioni di progetto sopra richiamate.

Parte inferiore del fusto 345×400 armata con $2\times25\Phi30$ e $2\times20\Phi30$ sui due lati Sollecitazioni di verifica

$N_{Ed ext{-}Freq} = 9180 \text{ kN}$	$N_{Ed\text{-}QPerm} = 9195 \text{ kN}$
$M_{TEd ext{-}Freq} = 2100 \text{ kNm}$	$M_{TEd\text{-}QPerm} = 0 \ kNm$
$M_{LEd-Freq} = 0 \text{ kNm}$	$M_{LEd-QPerm} = 0 \text{ kNm}$

Al fine della verifica a fessurazione, si è considerata una classe di esposizione ordinaria XF1 (Grado moderato di saturazione, in assenza di agenti disgelanti; es: superfici verticali esposte alla pioggia e al gelo – Tab.12 delle "Linee guida per il calcestruzzo strutturale emesse dal Servizio Tecnico Centrale dei Lavori Pubblici"). Trattandosi di una struttura in calcestruzzo armato, per la quale dovrà considerarsi un'armatura di tipo poco sensibile alla corrosione, gli stati limite da dover verificare sono i seguenti:

Gruppo di	Condizione	Combinazione	Armatura Poco Sensibile	
esigenze	Ambientale	di Azione	Stato Limite	$\mathbf{w_d}$
a	Ordinarie	frequente	ap. fessure	\leq w ₃ = 0,4 mm
а	Ordinarie	quasi permanente	ap. fessure	\leq w ₂ = 0,3 mm

Considerando un'armatura costituita da barre del diametro \emptyset 30, i limiti tensionali nell'acciaio sono i seguenti (Tab. C4.1.II della Circolare applicativa del NTC 2008)

- PROGETTO DEFINITIVO -

	σ_s [MPa]	σ_s [MPa] (interpolato)	
Combinazione frequente	< 200 (barre Ø32)	(206 (hama (120)	
Comomazione frequente	< 240 (barre Ø20)	< 206 (barre Ø30)	
Combinazione quasi permanente	< 160 (barre Ø32)	(171 (homo (120)	
Comomazione quasi permanente	< 200 (barre Ø25)	< 171 (barre Ø30)	

Tensioni compatibili con quelle presenti nella struttura.

SLE	SLE
Frequente	Quasi Permanente
$\sigma_{\rm s} < 0$	$\sigma_{\rm s} < 0$
Sezione Interamente Compressa	Sezione Interamente Compressa

Considerata la spaziatura massima tra le barre pari a 200 mm, l'ulteriore condizione sulla tensione di trazione nell'acciaio è la seguente (Tab. C4.1.III della Circolare applicativa del NTC 2008):

	$\sigma_{\rm s}$
	[MPa]
Combinazione frequente	280
Combinazione quasi permanente	240

anch'esse compatibili con le tensioni di progetto sopra richiamate.

- PROGETTO DEFINITIVO -

C.10 COMPORTAMENTO DINAMICO

Al fine di determinare le proprietà dinamiche della passerella, è stata condotta un'analisi modale impiegando il programma agli elementi finiti SAP2000, così da valutare i corrispondenti modi principali di vibrazione.

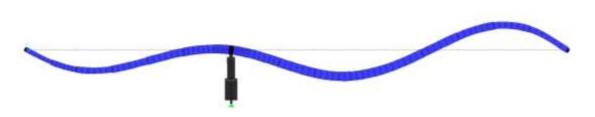
Un'immagine del modello utilizzato è riportato nella figura seguente. Le masse partecipanti sono quelle associate al carico g_1 e al carico g_2 .

Nelle figure seguenti sono invece riportati i primi sei modi di vibrare e i corrispondenti periodi propri.

Modo Verticale

Forma modale	Periodo [sec]	Frequenza [Hz]
N.1	1,562	0,640

- PROGETTO DEFINITIVO -


Modo Orizzontale

Forma modale	Periodo [sec]	Frequenza [Hz]
N.2	0,835	1,198

Modo Verticale

Forma modale	Periodo [sec]	Frequenza [Hz]
N.3	0,649	1,540

Modo Verticale

Forma modale	Periodo [sec]	Frequenza [Hz]
N.4	0,414	2,415

- PROGETTO DEFINITIVO -

Modo Orizzontale

Forma modale	Periodo [sec]	Frequenza [Hz]
N.5	0,338	2,959

Modo Orizzontale

Forma modale	Periodo [sec]	Frequenza [Hz]
N.6	0,314	3,185

Dall'esame dei risultati la passerella rientra nei limiti di funzionalità fissati per strutture di questo tipo, così come risulta dalle indicazioni del documento "**Technical guide** – **Footbridges** – **Assessment of vibrational behaviour of footbridges under pedestrian loading** – SÉTRA – Service d'Ètudes techniques des routes et autoroutes", del quale se ne riporta un estratto nel seguito, in vista del livello d'uso che la classifica come passerella di CLASSE TERZA:

- PROGETTO DEFINITIVO -

4.3.1 - Frequency range classification

In both vertical and horizontal directions, there are four frequency ranges, corresponding to a decreasing risk of resonance:

Range 1: maximum risk of resonance.

Range 2: medium risk of resonance.

Range 3: low risk of resonance for standard loading situations.

Range 4: negligible risk of resonance.

Table 2.3 defines the frequency ranges for vertical vibrations and for longitudinal horizontal

vibrations. Table 2.4 concerns transverse horizontal vibrations.

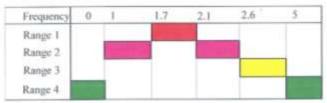


Table 2.3: Frequency ranges (Hz) of the vertical and longitudinal vibrations

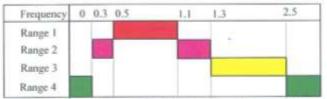


Table 2.4: Frequency ranges (Hz) of the transverse horizontal vibrations

4.3.2 - Definition of the required dynamic calculations

Depending on footbridge class and on the ranges within which its natural frequencies are situated, it is necessary to carry out dynamic structure calculations for all or part of a set of 3

Case 1: sparse and dense crowd

Case 2: very dense crowd

Case 3: complement for an evenly distributed crowd (2nd harmonic effect)

Table 2.5 clearly defines the calculations to be performed in each case.

La verifica di funzionalità dal punto di vista del comfort dovrà comunque essere eseguita sulla struttura reale con differenti scenari di passaggio e nel caso che si verificassero delle perdite di comfort si dovranno inserire le masse sintonizzate (TMD) sui modi di vibrazione di maggiore interesse e nei punti di maggiore accelerazione.

Per gli appoggi di estremità sono stati considerati degli apparecchi capaci di dimostrare una rigidezza elevata allo spostamento longitudinale in caso di azioni di bassa intensità e brevissima durata in modo da ridurre a livelli accettabili il periodo proprio di vibrazione nel piano orizzontale. Nella progettazione esecutiva potranno modificarsi tali apparecchi di appoggio fermo restando la necessità di assicurare un comfort dinamico sufficiente per le azioni orizzontali (lock-in effect).

- PROGETTO DEFINITIVO -

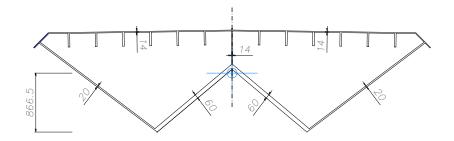
D PIANO DI MANUTENZIONE DELLA PARTE STRUTTURALE DELL'OPERA

D.1 PIANO DI MANUTENZIONE ORDINARIA

Il piano di manutenzione ordinaria dovrà essere redatto nell'ambito del progetto esecutivo.

A questo proposito, tuttavia, si richiama l'attenzione sulla necessità di prevedere controlli della struttura in caso di eventi sismici di intensità pari a quella di attivazione del Servizio della Protezione Civile Provinciale.

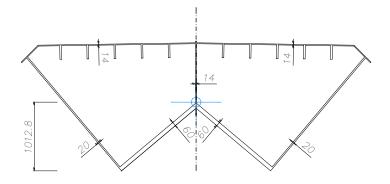
Particolare attenzione dovrà essere rivolto ai sistemi di vincolo, per i quali è prevista una vita nominale di 50 anni; al termine di questa, tali sistemi dovranno essere sostituiti.

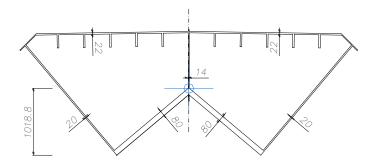

- PROGETTO DEFINITIVO -

E APPENDICE

E.1 CARATTERISTICHE GEOMETRICHE DELLE SEZIONI TRASVERSALI

Nel seguito, si riportano le sezioni trasversali dell'impalcato in struttura metallica. Per ognuna di esse, indicata con la numerazione richiamata nei capitoli precedenti, sono indicate le caratteristiche meccaniche principali.

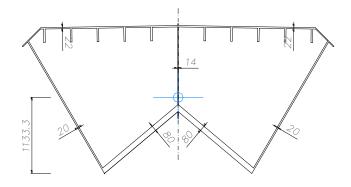

SEZ.1012	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	4121	
/xx :	9.829E+06	
l _{уу} :	8.134E+07	
Ω:	50921	

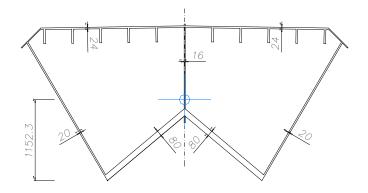


- PROGETTO DEFINITIVO -

Sezione n. 1020

SEZ.1020	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	3976	
/xx :	1.634E+07	
l _{уу} :	6.207E+07	
Ω:	59764	

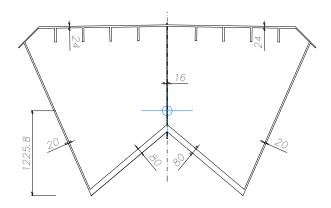

SEZ.1021	CARATTERISTICHE GEOMETRICHE [cm]
Area :	4934
/** :	2.066E+07
lyy :	7.133E+07
Ω:	59764

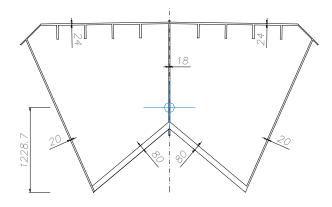


- PROGETTO DEFINITIVO -

Sezione n. 1030

SEZ.1030	CARATTERISTICHE GEOMETRICHE [cm]
Area :	4891
/** :	2.923E+07
l _{уу} :	6.147E+07
Ω:	65370

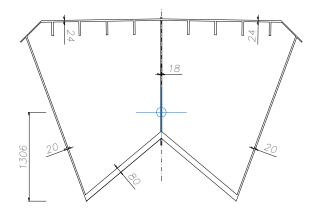

SEZ.1031	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	4998	
/ _{xx} :	3.015E+07	
l _{уу} :	6.263E+07	
Ω:	65372	

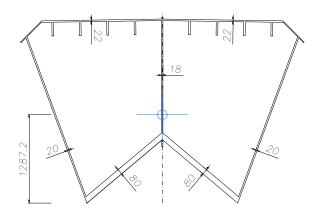


- PROGETTO DEFINITIVO -

Sezione n. 1040

SEZ.1040	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	4905	
/×× :	3.766E+07	
l _{уу} :	5.347E+07	
Ω :	69797	

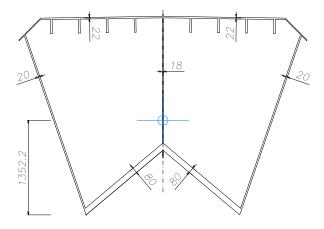

SEZ.1041	CARATTERISTICHE GEOMETRICHE [cm]
Area :	4935
/×× :	3.779E+07
l _{уу} :	5.347E+07
Ω:	69800

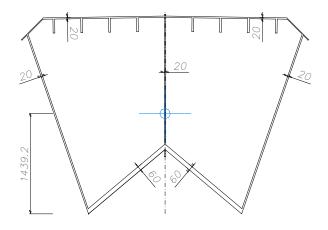

- PROGETTO DEFINITIVO -

Sezione n. 1050

SEZ.1050	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	4986	
/×× :	4.567E+07	
lyy :	5.151E+07	
Ω:	74058	

Sezione 1051

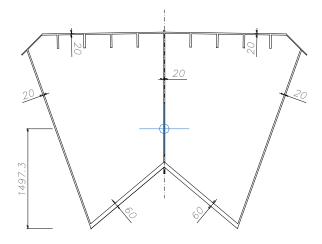

SEZ.1051	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	4916	
/ _{xx} :	4.442E+07	
lyy :	5.077E+07	
Ω:	74058	

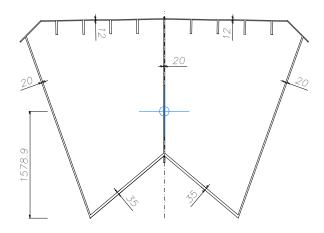


- PROGETTO DEFINITIVO -

Sezione n. 1060

SEZ.1060	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	4999	
/xx :	5.138E+07	
l _{уу} :	5.199E+07	
Ω:	78877	

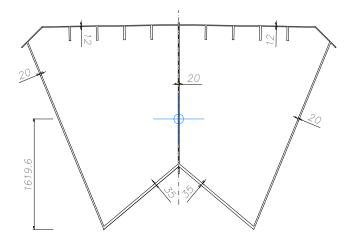

SEZ.1061	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	4394	
/×× :	4.568E+07	
l _{уу} :	4.890E+07	
Ω :	78879	

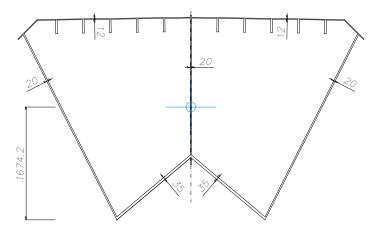


- PROGETTO DEFINITIVO -

Sezione n. 1070

SEZ.1070	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	4500	
/xx :	5.097E+07	
l _{уу} :	5.304E+07	
Ω:	84707	

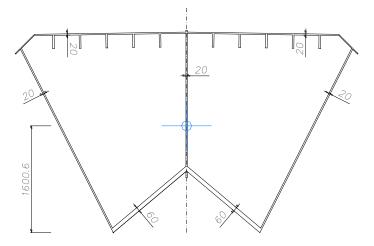

SEZ.1071	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	3496	
/** :	3.761E+07	
l _{уу} :	4.686E+07	
Ω:	84707	

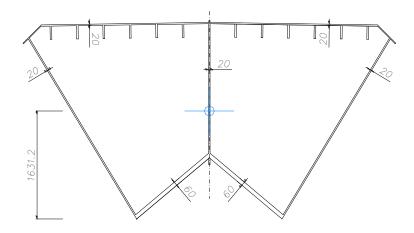


- PROGETTO DEFINITIVO -

Sezione n. 1082

SEZ.1082	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	3593	
l _{xx} :	4.040E+07	
lyy :	5.366E+07	
Ω :	91706	


SEZ.1090	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	3086	
l _{××} :	4.351E+07	
lyy :	6.937E+07	
Ω:	100183	



- PROGETTO DEFINITIVO -

Sezione n. 1091

SEZ.1091	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	4885	
l _{xx} :	5.938E+07	
lyy :	7.866E+07	
Ω :	100183	

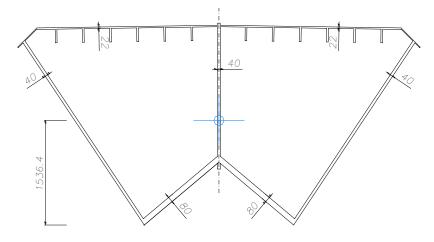
SEZ.1100	CARATTERISTICHE GEOMETRICHE [cm]
Area :	5119
/xx :	6.121E+07
l _{уу} :	9.943E+07
Ω:	106583

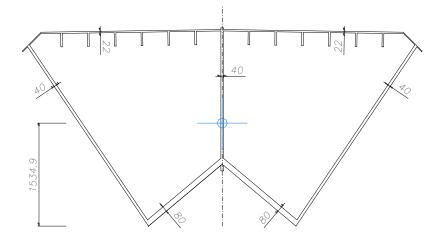


- PROGETTO DEFINITIVO -

Sezione n. 1101

SEZ.1101	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	5801	
l _{xx} :	6.979E+07	
lyy :	1.041E+08	
Ω :	106583	

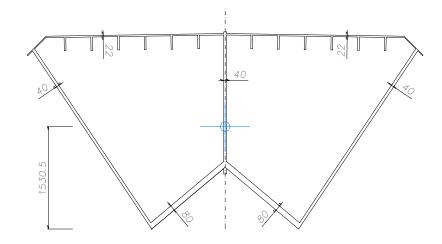

SEZ.1110	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	5875	
l _{xx} :	6.916E+07	
lyy :	1.132E+08	
Ω:	109260	

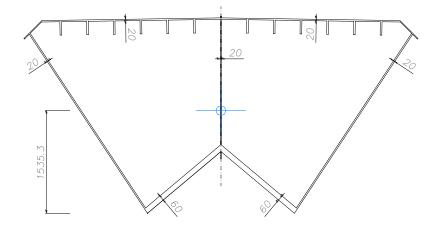


- PROGETTO DEFINITIVO -

Sezione n. 1111

SEZ.1111	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	7534	
l×× :	7.854E+07	
lyy :	1.669E+08	
Ω :	109885	

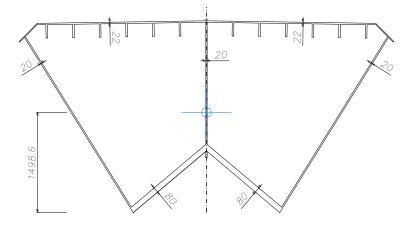

SEZ.1122	CARATTERISTICHE GEOMETRICHE [cm]
Area :	7545
l _{xx} :	7.836E+07
l _{уу} :	1.690E+08
Ω:	110227

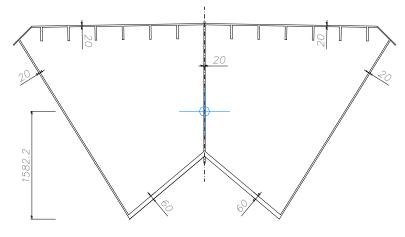


- PROGETTO DEFINITIVO -

Sezione n. 1130

SEZ.1130	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	7520	
lxx :	7.769E+07	
lyy :	1.665E+08	
Ω :	109365	

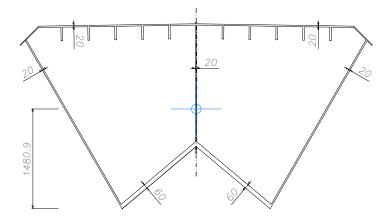

SEZ.1131	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	5866	
lxx :	6.840E+07	
l _{уу} :	1.130E+08	
Ω:	108739	

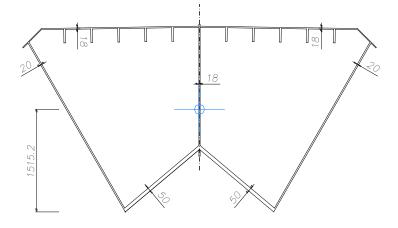


- PROGETTO DEFINITIVO -

Sezione n. 1140

SEZ.1140	CARATTERISTICHE GEOMETRICHE	[cm]
Area :	5745	
l _{××} :	6.412E+07	
l _{уу} :	1.024E+08	
Ω :	102570	

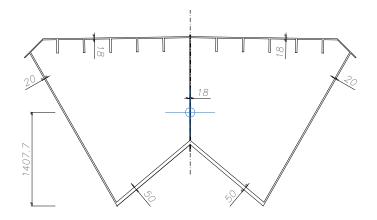

SEZ.1141	CARATTERISTICHE GEOMETRICHE [cm]
Area :	5063
/×× :	5.624E+07
l _{уу} :	9.774E+07
Ω:	102570

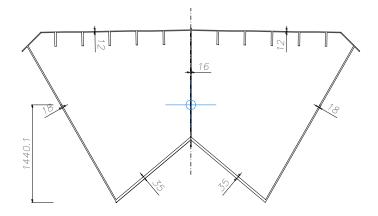


- PROGETTO DEFINITIVO -

Sezione n. 1150

SEZ.1150	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	4775	
l _{xx} :	4.766E+07	
lyy :	7.846E+07	
Ω :	92123	

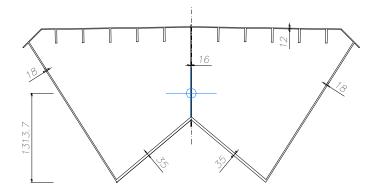

SEZ.1151	CARATTERISTICHE GEOMETRICHE [cm]
Area :	4357
/×× :	4.323E+07
l _{уу} :	7.554E+07
Ω:	92121

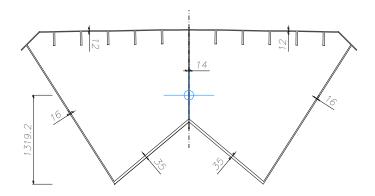


- PROGETTO DEFINITIVO -

Sezione n. 1160

SEZ.1160	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	4183	
/*x :	3.509E+07	
lyy :	6.680E+07	
Ω:	81499	

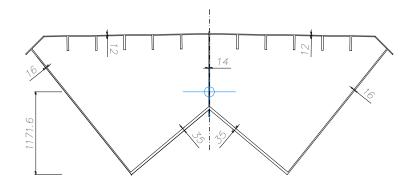

SEZ.1161	CARATTERISTICHE GEOMETRICHE [cm]
Area :	3350
lxx :	2.749E+07
lyy :	5.732E+07
Ω:	81497

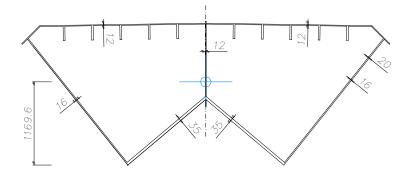


- PROGETTO DEFINITIVO -

Sezione n. 1170

SEZ.1170	CARATTERISTICHE GEOMETRICHE [cm]
Area :	3232
l _{xx} :	2.109E+07
lyy :	5.459E+07
Ω:	72430


SEZ.1171	CARATTERISTICHE GEOMETRICHE [cm]
Area :	3107
l _{××} :	2.062E+07
l _{уу} :	5.151E+07
Ω:	72428

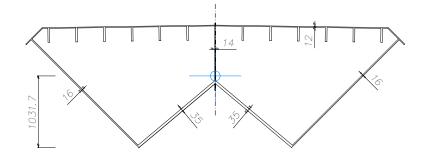


- PROGETTO DEFINITIVO -

Sezione n. 1180

SEZ.1180	CARATTERISTICHE GEOMETRICHE [cm]
Area :	3036
/×× :	1.459E+07
lyy :	5.303E+07
Ω:	63987

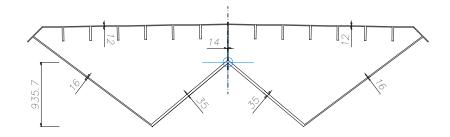

SEZ.1181	CARATTERISTICHE GEOMETRICHE [cm]
Area :	3013
/×× :	1.455E+07
lyy :	5.303E+07
Ω:	63984



- PROGETTO DEFINITIVO -

Sezione n. 1190

SEZ.1190	CARATTERISTICHE GEOMETRICHE [cm]
Area :	3095
/×× :	1.114E+07
l _{уу} :	6.236E+07
Ω:	58069



SEZ.1191	CARATTERISTICHE GEOMETRICHE [cm]	
Area :	3113	
lxx :	1.116E+07	
lyy :	6.236E+07	
Ω:	58072	

- PROGETTO DEFINITIVO -

SEZ.1202	CARATTERISTICHE GEOMETRICHE [cm]
Area :	3111
/xx :	7.435E+06
l _{уу} :	6.850E+07
Ω:	50613

- PROGETTO DEFINITIVO -

E.2 PRESCRIZIONI CONFERENZA DEI SERVIZI

La presente relazione tecnica di calcolo strutturale è stata redatta nel rispetto della normativa vigente sui lavori pubblici e segnatamente l'art. 26 e art.29 DPR 207/2010. Per i riferimenti tecnici è stata seguita la norma di carattere generale e rappresentata dalle NTC2008. Il livello di progettazione successivo, progettazione esecutiva, dovrà quindi rispettare sia gli articoli 35 e 37 del citato Regolamento (DPR207/2010) sia le disposizioni di cui all'art.10 delle NTC2008 che si riferisce appunto alla "*Redazione dei progetti strutturali esecutivi e delle relazioni di calcolo.*"

Le verifiche condotte nel progetto definitivo hanno inquadrato con sufficiente completezza le disposizioni relative al punto 7.11.5.3.2 delle NTC2008 e si rimanda alla fase esecutiva la reiterazione delle verifiche suddividendole in ciascun punto previsto dalla normativa richiamata.

Le verifiche strutturali sono state condotte seguendo *l'approccio 2* impiegando un'unica combinazione dei gruppi dei coefficienti parziali previsti dalla normativa (A1+M1+R3). In fase esecutiva l'Autorità di Bacino del Fiume Arno ha suggerito di verificare le fondazioni, ad ulteriore riprova, verso le condizioni GEO e combinazione (A2+M1+R2). Per la verifica della spinta idraulica sulla pila centrale sono stati utilizzati i coefficienti di forma per sezioni affusolate (cfr. Manuale Cremonese Vol.I pag. 195 Ed. 1983); in fase esecutiva si dovrà verificare la rispondenza del coefficiente di forma con l'effettiva forma che sarà realizzata.

La relazione di calcolo definitiva è stata redatta su analisi elastostatiche condotte con il codice di calcolo SAP2000 Non Linear vers. 8.3.7 licenza n.S15922. I risultati sono stati elaborati da postprocessori e verificati con analisi manuali approssimate. La progettazione esecutiva dovrà comunque contenere i riferimenti dei codici di calcolo utilizzati e le indicazioni delle verifiche di affidabilità eseguite.

